2025/03/27 更新

写真a

シャクマトフ ディミトリ
Shakhmatov Dmitri
Shakhmatov Dmitri
所属
大学院理工学研究科(理) 理工学専攻 数理科学 教授
職名
教授
連絡先
メールアドレス
外部リンク

学位

  • 学術博士 MOSCOW UNIVERSTIY(MOSCOW,RUSSIA)1987

研究キーワード

  • 位相数学

  • 位相群

研究分野

  • 自然科学一般 / 幾何学

学歴

  • モスクワ国立大学,力学・数学学部大学院   数理科学研究科   数学

    - 1986年

      詳細を見る

  • Moscow State University   Graduate School, Division of Mathematical Sciences

    - 1986年

      詳細を見る

  • Moscow State University

    - 1983年

      詳細を見る

  • モスクワ国立大学   力学・数学学部

    - 1983年

      詳細を見る

所属学協会

論文

  • On subsets of R^n spanning it via positive integers as multipliers 査読

    Vitalij A. Chatyrko, Dimitri B. Shakhmatov

    Topology and its Applications   301 ( 107497 )   1 - 14   2021年9月

     詳細を見る

    記述言語:英語   掲載種別:研究論文(学術雑誌)  

    DOI: 10.1016/j.topol.2020.107497

    researchmap

  • Compactness properties defined by open-point games 査読

    A. Dorantes-Aldama, D. Shakhmatov

    Topology and its Applications   284 ( 107196 )   1 - 21   2020年10月

     詳細を見る

    記述言語:英語   掲載種別:研究論文(学術雑誌)   出版者・発行元:Elsevier BV  

    DOI: 10.1016/j.topol.2020.107196

    researchmap

  • Automorphism groups of dense subgroups of R^n 査読

    CHATYRKO Vitalij, SHAKHMATOV DMITRI

    Topology and its Applications   275 ( 107000 )   1 - 19   2020年4月

     詳細を見る

    記述言語:英語   掲載種別:研究論文(学術雑誌)  

    DOI: 10.1016/j.topol.2019.107000

    researchmap

  • Topological groups all continuous automorphisms of which are open 査読

    Vitalij A. Chatyrko, Dmitri B. Shakhmatov

    Topology and its Applications   275 ( 107051 )   1 - 18   2020年4月

     詳細を見る

    記述言語:英語   掲載種別:研究論文(学術雑誌)   出版者・発行元:Elsevier BV  

    DOI: 10.1016/j.topol.2019.107051

    researchmap

  • Cardinal invariants and convergence properties of locally minimal groups 査読

    Dikran Dikranjan, Dmitri Shakhmatov

    Topology and its Applications   272 ( 106984 )   1 - 24   2020年3月

     詳細を見る

    記述言語:英語   掲載種別:研究論文(学術雑誌)   出版者・発行元:Elsevier BV  

    DOI: 10.1016/j.topol.2019.106984

    researchmap

  • Countably compact groups and sequential order 査読

    SHAKHMATOV Dmitri, SHIBAKOV Alexander

    Topology and its Applications   270 ( 106943 )   1 - 33   2020年2月

     詳細を見る

    記述言語:英語   掲載種別:研究論文(学術雑誌)  

    DOI: 10.1016/j.topol.2019.106943

    researchmap

  • The impact of the Bohr topology on selective pseudocompactness 査読

    Dmitri Shakhmatov, Víctor Hugo Yañez

    Topology and its Applications   264   498 - 506   2019年9月

     詳細を見る

    記述言語:英語   掲載種別:研究論文(学術雑誌)  

    © 2019 Elsevier B.V. Recall that a space X is selectively pseudocompact if for every sequence {Un:n∈N} of non-empty open subsets of X one can choose a point xn∈Un for all n∈N such that the resulting sequence {xn:n∈N} has an accumulation point in X. This notion was introduced under the name strong pseudocompactness by García-Ferreira and Ortiz-Castillo; the present name is due to Dorantes-Aldama and the first listed author. In 2015, García-Ferreira and Tomita constructed a pseudocompact Boolean group that is not selectively pseudocompact. We prove that if the subgroup topology on every countable subgroup H of an infinite Boolean topological group G is finer than its maximal precompact topology (the so-called Bohr topology of H), then G is not selectively pseudocompact, and from this result we deduce that many known examples in the literature of pseudocompact Boolean groups automatically fail to be selectively pseudocompact. We also show that, under the Singular Cardinal Hypothesis, every infinite pseudocompact Boolean group admits a pseudocompact reflexive group topology which is not selectively pseudocompact.

    DOI: 10.1016/j.topol.2019.06.018

    Scopus

    researchmap

  • SSGP topologies on free groups of infinite rank 招待 査読

    Dmitri Shakhmatov, Víctor Hugo Yañez

    Topology and its Applications   259   384 - 410   2019年6月

     詳細を見る

    記述言語:英語   掲載種別:研究論文(学術雑誌)  

    © 2019 Elsevier B.V. We prove that every free group G with infinitely many generators admits a Hausdorff group topology T with the following property: for every T-open neighbourhood U of the identity of G, each element g∈G can be represented as a product g=g 1 g 2 …g k , where k is a positive integer (depending on g) and the cyclic group generated by each g i is contained in U. In particular, G admits a Hausdorff group topology with the small subgroup generating property of Gould. This provides a positive answer to a question of Comfort and Gould in the case of free groups with infinitely many generators. The case of free groups with finitely many generators remains open.

    DOI: 10.1016/j.topol.2019.02.043

    Scopus

    researchmap

  • SSGP topologies on abelian groups of positive finite divisible rank 査読

    Dmitri Shakhmatov, Víctor Hugo Yañez

    Fundamenta Mathematicae   244 ( 2 )   125 - 145   2019年

     詳細を見る

    記述言語:英語   掲載種別:研究論文(学術雑誌)  

    © Instytut Matematyczny PAN, 2019 For a subset A of a group G, we denote by hAi the smallest subgroup of G containing A and let Cyc(A) = {x ∈ G : h{x}i ⊆ A}. A topological group G is SSGP if hCyc(U)i is dense in G for every neighbourhood U of the identity of G. The SSGP groups form a proper subclass of the class of minimally almost periodic groups. Comfort and Gould asked about a characterization of abelian groups which admit an SSGP group topology. An “almost complete” characterization was found by Dikranjan and the first author. The remaining case is resolved here. As a corollary, we give a positive answer to another question of Comfort and Gould by showing that if an abelian group admits an SSGP(n) group topology for some positive integer n, then it admits an SSGP group topology as well.

    DOI: 10.4064/fm463-3-2018

    Scopus

    researchmap

  • Selectively pseudocompact groups without infinite separable pseudocompact subsets 招待 査読

    Dmitri Shakhmatov, Víctor Hugo Yañez

    Axioms   7 ( 4 )   1 - 23   2018年11月

     詳細を見る

    記述言語:英語   掲載種別:研究論文(学術雑誌)  

    © 2018 by the authors. We give a "naive" (i.e., using no additional set-theoretic assumptions beyond ZFC, the Zermelo-Fraenkel axioms of set theory augmented by the Axiom of Choice) example of a Boolean topological group G without infinite separable pseudocompact subsets having the following "selective" compactness property: For each free ultrafilter p on the set N of natural numbers and every sequence (Un) of non-empty open subsets of G, one can choose a point xn ∈ Un for all n ∈ N in such a way that the resulting sequence (xn) has a p-limit in G; that is, n ∈ N: xn ∈ V ∈ p for every neighbourhood V of x in G. In particular, G is selectively pseudocompact (strongly pseudocompact) but not selectively sequentially pseudocompact. This answers a question of Dorantes-Aldama and the first listed author. The group G above is not pseudo-w-bounded either. Furthermore, we show that the free precompact Boolean group of a topological sum ⊕i∈I Xi, where each space Xi is either maximal or discrete, contains no infinite separable pseudocompact subsets.

    DOI: 10.3390/axioms7040086

    Scopus

    researchmap

  • Linear extension operators of bounded norms 査読

    Dmitri Shakhmatov, Vesko Valov, Takamitsu Yamauchi

    Journal of Mathematical Analysis and Applications   466 ( 1 )   952 - 960   2018年10月

     詳細を見る

    記述言語:英語   掲載種別:研究論文(学術雑誌)   出版者・発行元:Academic Press Inc.  

    Dugundji spaces were introduced by Pełczyński as compact Hausdorff spaces X such that every embedding of X into a Tychonoff cube [0,1]A admits a linear extension operator u:C(X)→C([0,1]A) such that ‖u‖=1 and u(1X)=1[0,1]A , where 1X is the constant function on X taking value 1. In this paper we show that a compact space X is Dugundji provided that there exists a linear extension operator u:C(X)→C([0,1]A) satisfying one of the following conditions: (a) ‖u‖&lt
    2 and |u(f⋅g)|≤‖g‖⋅|u(|f|)| for all f,g∈C(X)
    (b) ‖u‖=1.

    DOI: 10.1016/j.jmaa.2018.06.030

    Scopus

    researchmap

  • Characterizing Lie groups by controlling their zero-dimensional subgroups 査読

    Dikran Dikranjan, Dmitri Shakhmatov

    Forum Mathematicum   30 ( 2 )   295 - 320   2018年3月

     詳細を見る

    記述言語:英語   掲載種別:研究論文(学術雑誌)   出版者・発行元:Walter de Gruyter GmbH  

    We provide characterizations of Lie groups as compact-like groups in which all closed zero-dimensional metric (compact) subgroups are discrete. The "compact-like" properties we consider include (local) compactness, (local) ω-boundedness, (local) countable compactness, (local) precompactness, (local) minimality and sequential completeness. Below is A sample of our characterizations is as follows: (i) A topological group is a Lie group if and only if it is locally compact and has no infinite compact metric zero-dimensional subgroups. (ii) An abelian topological group G is a Lie group if and only if G is locally minimal, locally precompact and all closed metric zero-dimensional subgroups of G are discrete. (iii) An abelian topological group is a compact Lie group if and only if it is minimal and has no infinite closed metric zero-dimensional subgroups. (iv) An infinite topological group is a compact Lie group if and only if it is sequentially complete, precompact, locally minimal, contains a non-empty open connected subset and all its compact metric zero-dimensional subgroups are finite.

    DOI: 10.1515/forum-2017-0010

    Scopus

    researchmap

  • The existence of continuous weak selections and orderability-type properties in products and filter spaces 査読

    Koichi Motooka, Dmitri Shakhmatov, Takamitsu Yamauchi

    TOPOLOGY AND ITS APPLICATIONS   232   45 - 60   2017年12月

     詳細を見る

    記述言語:英語   掲載種別:研究論文(学術雑誌)   出版者・発行元:ELSEVIER SCIENCE BV  

    Orderability, weak orderability and the existence of continuous weak selections on spaces with a single non-isolated point and their products are discussed. We prove that a closed continuous image X of a suborderable space must be hereditarily paracompact provided that its product X x Y with some non-discrete space Y has a separately continuous weak selection. (C) 2017 Elsevier B.V. All rights reserved.

    DOI: 10.1016/j.topol.2017.09.030

    Web of Science

    arXiv

    researchmap

  • Selectively sequentially pseudocompact group topologies on torsion and torsion-free Abelian groups 査読

    Alejandro Dorantes-Aldama, Dmitri Shakhmatov

    TOPOLOGY AND ITS APPLICATIONS   230   562 - 577   2017年10月

     詳細を見る

    記述言語:英語   掲載種別:研究論文(学術雑誌)   出版者・発行元:ELSEVIER SCIENCE BV  

    A space X is selectively sequentially pseudocompact if for every family {U-n : n is an element of N} of non-empty open subsets of X, one can choose a point x(n) is an element of U-n for every n is an element of N in such a way that the sequence {x(n) : n is an element of N} has a convergent subsequence. Let G be a group from one of the following three classes: (i) V-free groups, where V is an arbitrary variety of Abelian groups; (ii) torsion Abelian groups; (iii) torsion free Abelian groups. Under the Singular Cardinal Hypothesis SCH, we prove that if G admits a pseudocompact group topology, then it can also be equipped with a selectively sequentially pseudocompact group topology. Since selectively sequentially pseudocompact spaces are strongly pseudocompact in the sense of Garcia-Ferreira and Ortiz-Castillo, this provides a strong positive (albeit partial) answer to a question of Garcia-Ferreira and Tomita. (C) 2017 Elsevier B.V. All rights reserved.

    DOI: 10.1016/j.topol.2017.08.020

    Web of Science

    researchmap

  • Subgroups of direct products closely approximated by direct sums 査読

    Maria Ferrer, Salvador Hernandez, Dmitri Shakhmatov

    FORUM MATHEMATICUM   29 ( 5 )   1125 - 1144   2017年9月

     詳細を見る

    記述言語:英語   掲載種別:研究論文(学術雑誌)   出版者・発行元:WALTER DE GRUYTER GMBH  

    Let I be an infinite set, let {G(i) : i is an element of I} be a family of (topological) groups and let G = Pi(i is an element of J) Gi be its direct product. For J subset of I, p(J) : G Pi(i is an element of J) Gj denotes the projection. We say that a subgroup H of G is
    (i) uniformly controllable in G provided that for every finite set J subset of I there exists a finite set K subset of I such that pJ(H) = p(J)(H boolean AND circle plus (i is an element of K) G(i)),
    (ii) controllable in G provided that pJ(H) = p(J)(H boolean AND circle plus (i is an element of K) G(i)) for every finite set J subset of I,
    (iii) weakly controllable in G if H boolean AND circle plus (i is an element of I) G(i) is dense in H, when G is equipped with the Tychonoff product topology.
    One easily proves that ( i) double right arrow ( ii) double right arrow ( iii). We thoroughly investigate the question as to when these two arrows can be reversed. We prove that the first arrowcan be reversed when H is compact, but the second arrow cannot be reversed even when H is compact. Both arrows can be reversed if all groups G(i) are finite. When G(i) = A for all i is an element of I, where A is an abelian group, we show that the first arrow can be reversed for all subgroups H of G if and only if A is finitely generated. We also describe compact groups topologically isomorphic to a direct product of countably many cyclic groups. Connections with coding theory are highlighted.

    DOI: 10.1515/forum-2016-0047

    Web of Science

    researchmap

  • Completeness and compactness properties in metric spaces, topological groups and function spaces 査読

    Alejandro Dorantes-Aldama, Dmitri Shakhmatov

    TOPOLOGY AND ITS APPLICATIONS   226   134 - 164   2017年8月

     詳細を見る

    記述言語:英語   掲載種別:研究論文(学術雑誌)   出版者・発行元:ELSEVIER SCIENCE BV  

    We prove that many completeness properties coincide in metric spaces, precompact groups and dense subgroups of products of separable metric groups. We apply these results to function spaces C-p (X, G) of G-valued continuous functions on a space X with the topology of pointwise convergence, for a separable metric group G. A space X is weakly pseudocompact if it is Go-dense in at least one of its compactifications. A topological group G is precompact if it is topologically isomorphic to a subgroup of a compact group. We prove that every weakly pseudocompact precompact topological group is pseudocompact, thereby answering positively a question of M. Tkachenko. (C) 2017 Elsevier B.V. All rights reserved.

    DOI: 10.1016/j.topol.2017.04.012

    Web of Science

    researchmap

  • A COUNTABLE FREE CLOSED NON-REFLEXIVE SUBGROUP OF Z(c) 査読

    Maria Vicenta Ferrer, Salvador Hernandez, Dmitri Shakhmatov

    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY   145 ( 8 )   3599 - 3605   2017年8月

     詳細を見る

    記述言語:英語   掲載種別:研究論文(学術雑誌)   出版者・発行元:AMER MATHEMATICAL SOC  

    We prove that the group G = Hom(Z(N), Z) of all homomorphisms from the Baer-Specker group Z(N) to the group Z of integer numbers endowed with the topology of pointwise convergence contains no infinite compact sub-sets. We deduce from this fact that the second Pontryagin dual of G is discrete. As G is non-discrete, it is not reflexive. Since G can be viewed as a closed subgroup of the Tychonoff product Z(c) of continuum many copies of the integers Z, this provides an example of a group described in the title, thereby resolving a problem by Galindo, Recoder-Nunez and Tkachenko. It follows that an inverse limit of finitely generated (torsion-) free discrete abelian groups need not be reflexive.

    DOI: 10.1090/proc/13532

    Web of Science

    researchmap

  • Selective sequential pseudocompactness 査読

    Alejandro Dorantes-Aldama, Dmitri Shakhmatov

    TOPOLOGY AND ITS APPLICATIONS   222   53 - 69   2017年5月

     詳細を見る

    記述言語:英語   掲載種別:研究論文(学術雑誌)   出版者・発行元:ELSEVIER SCIENCE BV  

    We say that a topological space X is selectively sequentially pseudocompact if for every family {U-n : n is an element of N} of non-empty open subsets of X, one can choose a point x(n) is an element of U-n for every n is an element of N in such a way that the sequence {x(n) : n is an element of N} has a convergent subsequence. We show that the class of selectively sequentially pseudocompact spaces is closed under arbitrary products and continuous images, contains the class of all dyadic spaces and forms a proper subclass of the class of strongly pseudocompact spaces introduced recently by Garcia-Ferreira and Ortiz-Castillo. We investigate basic properties of this new class and its relations with known compactness properties. We prove that every omega-bounded (= the closure of each countable set is compact) group is selectively sequentially pseudocompact, while compact spaces need not be selectively sequentially pseudocompact. Finally, we construct selectively sequentially pseudocompact group topologies on both the free group and the free Abelian group with continuum-many generators. (C) 2017 Elsevier B.V. All rights reserved.

    DOI: 10.1016/j.topol.2017.02.016

    Web of Science

    researchmap

  • Direct sums and products in topological groups and vector spaces 査読

    Dikran Dikranjan, Dmitri Shakhmatov, Jan Spevak

    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS   437 ( 2 )   1257 - 1282   2016年5月

     詳細を見る

    記述言語:英語   掲載種別:研究論文(学術雑誌)   出版者・発行元:ACADEMIC PRESS INC ELSEVIER SCIENCE  

    We call a subset A of an abelian topological group G: (i) absolutely Cauchy summable provided that for every open neighbourhood U of 0 one can find a finite set F subset of A such that the subgroup generated by A\F is contained in U; (ii) absolutely summable if, for every family {z(a) : a is an element of A} of integer numbers, there exists g is an element of G such that the net {Sigma(a is an element of F) z(a)a : F subset of A is finite} converges to g; (iii) topologically independent provided that 0 is not an element of A and for every neighbourhood W of 0 there exists a neighbourhood V of 0 such that, for every finite set F subset of A and each set {z(a) : a is an element of F} of integers, Sigma(a is an element of F) z(a)a is an element of V implies that z(a)a is an element of W for all a is an element of F. We prove that: (1) an abelian topological group contains a direct product (direct sum) of kappa-many non-trivial topological groups if and only if it contains a topologically independent, absolutely (Cauchy) summable subset of cardinality kappa; (2) a topological vector space contains R-(N) as its subspace if and only if it has an infinite absolutely Cauchy summable set; (3) a topological vector space contains R-N as its subspace if and only if it has an R-N multiplier convergent series of non-zero elements. We answer a question of Husek and generalize results by Bessaga-Pelczynski-Rolewicz, Dominguez-Tarieladze and Lipecki. (C) 2016 Elsevier Inc. All rights reserved.

    DOI: 10.1016/j.jmaa.2016.01.037

    Web of Science

    researchmap

  • Topological groups with many small subgroups 査読

    Dikran Dikranjan, Dmitri Shakhmatov

    TOPOLOGY AND ITS APPLICATIONS   200   101 - 132   2016年3月

     詳細を見る

    記述言語:英語   掲載種別:研究論文(学術雑誌)   出版者・発行元:ELSEVIER SCIENCE BV  

    We introduce and study a functorial topology on every group G having as a base the family of all subgroups of G. Making use of this topology, we obtain an equivalent description of the small subgroup generating property introduced by Gould [26]; see also Comfort and Gould [6]. This property implies minimal almost periodicity. Answering questions of Comfort and Gould [6], we show that every abelian group of infinite divisible rank admits a group topology having the small subgroup generating property. For unbounded abelian groups of finite divisible rank, we find a new necessary condition for the existence of a group topology having the small subgroup generating property, and we conjecture that this condition is also sufficient. (C) 2015 Elsevier B.V. All rights reserved.

    DOI: 10.1016/j.topol.2015.12.015

    Web of Science

    researchmap

  • A complete solution of Markov's problem on connected group topologies 査読

    Dikran Dikranjan, Dmitri Shakhmatov

    ADVANCES IN MATHEMATICS   286   286 - 307   2016年1月

     詳細を見る

    記述言語:英語   掲載種別:研究論文(学術雑誌)   出版者・発行元:ACADEMIC PRESS INC ELSEVIER SCIENCE  

    Every proper closed subgroup of a connected Hausdorff group must have index at least c, the cardinality of the continuum. 70 years ago Markov conjectured that a group G can be equipped with a connected Hausdorff group topology provided that every subgroup of G which is closed in all Hausdorff group topologies on G has index at least c. Counter-examples in the non-abelian case were provided 25 years ago by Pestov and Remus, yet the problem whether Markov's Conjecture holds for abelian groups G remained open. We resolve this problem in the positive. (C) 2015 Elsevier Inc. All rights reserved.

    DOI: 10.1016/j.aim.2015.09.006

    Web of Science

    researchmap

  • Metrization criteria for compact groups in terms of their dense subgroups 査読

    Dikran Dikranjan, Dmitri Shakhmatov

    FUNDAMENTA MATHEMATICAE   221 ( 2 )   161 - 187   2013年

     詳細を見る

    記述言語:英語   掲載種別:研究論文(学術雑誌)   出版者・発行元:POLISH ACAD SCIENCES INST MATHEMATICS-IMPAN  

    According to Comfort, Raczkowski and Trigos-Arrieta, a dense subgroup D of a compact abelian group G determines G if the restriction homomorphism (G) over cap -> (D) over cap of the dual groups is a topological isomorphism. We introduce four conditions on D that are necessary for it to determine G and we resolve the following question: If one of these conditions holds for every dense (or G(delta)-dense) subgroup D of G, must G be metrizable? In particular, we prove (in ZFC) that a compact abelian group determined by all its G(delta)-dense subgroups is metrizable, thereby resolving a question of Hernandez, Macario and Trigos-Arrieta. (Under the additional assumption of the Continuum Hypothesis CH, the same statement was proved recently by Bruguera, Chasco, Dominguez, Tkachenko and Trigos-Arrieta.) As a tool, we develop a machinery for building G(delta)-dense subgroups without uncountable compact subsets in compact groups of weight omega(1) (in ZFC). The construction is delicate, as these subgroups must have non-trivial convergent sequences in some models of ZFC.

    DOI: 10.4064/fm221-2-3

    Web of Science

    researchmap

  • On the existence of kings in continuous tournaments 査読

    Masato Nagao, Dmitri Shakhmatov

    TOPOLOGY AND ITS APPLICATIONS   159 ( 13 )   3089 - 3096   2012年8月

     詳細を見る

    記述言語:英語   掲載種別:研究論文(学術雑誌)   出版者・発行元:ELSEVIER SCIENCE BV  

    The classical result of Landau on the existence of kings in finite tournaments (= finite directed complete graphs) is extended to continuous tournaments for which the set X of players is a compact Hausdorff space. The following partial converse is proved as well. Let X be a Tychonoff space which is either zero-dimensional or locally connected or pseudocompact or linearly ordered. If X admits at least one continuous tournament and each continuous tournament on X has a king, then X must be compact. We show that a complete reversal of our theorem is impossible, by giving an example of a dense connected subspace Y of the unit square admitting precisely two continuous tournaments both of which have a king, yet Y is not even analytic (much less compact). (C) 2012 Elsevier B.V. All rights reserved.

    DOI: 10.1016/j.topol.2012.05.021

    Web of Science

    researchmap

  • Quasi-convexly dense and suitable sets in the arc component of a compact group 査読

    Dikran Dikranjan, Dmitri Shakhmatov

    MATHEMATISCHE NACHRICHTEN   285 ( 4 )   476 - 485   2012年3月

     詳細を見る

    記述言語:英語   掲載種別:研究論文(学術雑誌)   出版者・発行元:WILEY-V C H VERLAG GMBH  

    Let G be an abelian topological group. The symbol (G) over cap denotes the group of all continuous characters. : G. T endowed with the compact open topology. A subset E of G is said to be qc-dense in G provided that chi(E) subset of phi ([-1/4, 1/4]) holds only for the trivial character chi is an element of (G) over cap, where phi : R -> T = R/Z is the canonical homomorphism. A super-sequence is a non-empty compact Hausdorff space S with at most one non-isolated point (to which S converges). We prove that an infinite compact abelian group G is connected if and only if its arc component G(a) contains a super-sequence converging to 0 that is qc-dense in G. This gives as a corollary a recent theorem of Aussenhofer: For a connected locally compact abelian group G, the restriction homomorphism r : (G) over cap -> (G) over cap (a) G(a) defined by r (chi) = chi vertical bar G(a) for chi is an element of (G) over cap, is a topological isomorphism. We show that an infinite compact group G is connected if and only if its arc component G(a) contains a super-sequence converging to the identity that is qc-dense in G and generates a dense subgroup of G. We also offer a short alternative proof of the result of Hofmann and Morris on the existence of suitable sets of minimal size in the arc component of a compact connected group. (C) 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

    DOI: 10.1002/mana.201010013

    Web of Science

    researchmap

  • A Kronecker-Weyl theorem for subsets of abelian groups

    Dikran Dikranjan, Dmitri Shakhmatov

    ADVANCES IN MATHEMATICS   226 ( 6 )   4776 - 4795   2011年4月

     詳細を見る

    記述言語:英語   掲載種別:研究論文(学術雑誌)   出版者・発行元:ACADEMIC PRESS INC ELSEVIER SCIENCE  

    Let N be the set of non-negative integer numbers, T the circle group and c the cardinality of the continuum. Given an abelian group G of size at most 2(c) and a countable family E of infinite subsets of G. we construct "Baire many" monomorphisms pi : G -> T(c) such that pi(E) is dense in {y is an element of T(c) : ny = 0} whenever n is an element of N, E is an element of E, nE = {0} and {x is an element of E: mx = g} is finite for all g is an element of G and m is an element of N\{0} such that n = mk for some k is an element of N\{1}. We apply this result to obtain an algebraic description of countable potentially dense subsets of abelian groups, thereby making a significant progress towards a solution of a problem of Markov going back to 1944. A particular case of our result yields a positive answer to a problem of Tkachenko and Yaschenko (2002) [22, Problem 6.5]. Applications to group actions and discrete flows on T(c), Diophantine approximation, Bohr topologies and Bohr compactifications are also provided. (C) 2010 Elsevier Inc. All rights reserved.

    DOI: 10.1016/j.aim.2010.12.016

    Web of Science

    arXiv

    researchmap

  • Productivity of sequences with respect to a given weight function

    Dikran Dikranjan, Dmitri Shakhmatov, Jan Spevak

    TOPOLOGY AND ITS APPLICATIONS   158 ( 3 )   298 - 324   2011年2月

     詳細を見る

    記述言語:英語   掲載種別:研究論文(学術雑誌)   出版者・発行元:ELSEVIER SCIENCE BV  

    Given a function f : N -> (omega + 1)\{0}, we say that a faithfully indexed sequence {a(n): n is an element of N} of elements of a topological group G is: (i) f-Cauchy productive ( f-productive) provided that the sequence {Pi(m)(n=0)a(n)(z(n)): m is an element of N} is left Cauchy (converges to some element of G, respectively) for each function z : N -> Z such that vertical bar z(n)vertical bar <= f(n) for every n is an element of N; (ii) unconditionally f-Cauchy productive (unconditionally f-productive) provided that the sequence {a(phi(n)): n is an element of N} is (f circle phi)-Cauchy productive (respectively, (f circle phi)-productive) for every bijection phi : N -> N. (Bijections can be replaced by injections here.) We consider the question of existence of (unconditionally) f-productive sequences for a given "weight function" f. We prove that: (1) a Hausdorff group having an f-productive sequence for some f contains a homeomorphic copy of the Cantor set; (2) if a non-discrete group is either locally compact Hausdorff or Weil complete metric, then it contains an unconditionally f-productive sequence for every function f : N -> N \{0}; (3) a metric group is NSS if and only if it does not contain an f(omega)-Cauchy productive sequence, where f(omega) is the function taking the constant value omega. We give an example of an f(omega)-productive sequence {a(n): n is an element of N} in a (necessarily non-abelian) separable metric group H with a linear topology and a bijection phi : N -> N such that the sequence {Pi(m)(n=0)a(phi(n)): m is an element of N} diverges, thereby answering a question of Dominguez and Tarieladze. Furthermore, we show that H has no unconditionally f(omega)-productive sequences. As an application of our results, we resolve negatively a question from C-p(-, G)-theory. (C) 2010 Elsevier B.V. All rights reserved.

    DOI: 10.1016/j.topol.2010.11.009

    Web of Science

    researchmap

  • The Markov-Zariski topology of an abelian group

    Dikran Dikranjan, Dmitri Shakhmatov

    JOURNAL OF ALGEBRA   324 ( 6 )   1125 - 1158   2010年9月

     詳細を見る

    記述言語:英語   掲載種別:研究論文(学術雑誌)   出版者・発行元:ACADEMIC PRESS INC ELSEVIER SCIENCE  

    According to Markov (1946) 1241, a subset of an abelian group G of the form (x is an element of G: nx = a), for some integer n and some element a is an element of G, is an elementary algebraic set; finite unions of elementary algebraic sets are called algebraic sets. We prove that a subset of an abelian group G is algebraic if and only if it is closed in every precompact (= totally buounded) Hausdorff group topology on G. The family of all algebraic sets of an abelian group G forms the family of closed subsets of a unique Noetherian T(1) topology 3(G) on G called the Zariski, or verbal, topology of G; see Bryant (1977) [31. We investigate the properties of this topology. In particular, we show that the Zariski topology is always hereditarily separable and Frechet-Urysohn.
    For a countable family 3 of subsets of an abelian group G of cardinality at most the continuum, we construct a precompact metric group topology 'T on G such that the T-closure of each member of g coincides with its 3(G)-closure. As an application, we provide a characterization of the subsets of G that are 'Tdense in some Hausdorff group topology T on C. and we show that such a topology, if it exists, can always be chosen so that it is precompact and metric. This provides a partial answer to a longstanding problem of Markov (1946)124]. (C) 2010 Elsevier Inc. All rights reserved.

    DOI: 10.1016/j.jalgebra.2010.04.025

    Web of Science

    arXiv

    researchmap

  • HEWITT-MARCZEWSKI-PONDICZERY TYPE THEOREM FOR ABELIAN GROUPS AND MARKOV'S POTENTIAL DENSITY 査読

    Dikran Dikranjan, Dmitri Shakhmatov

    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY   138 ( 8 )   2979 - 2990   2010年8月

     詳細を見る

    記述言語:英語   掲載種別:研究論文(学術雑誌)   出版者・発行元:AMER MATHEMATICAL SOC  

    For an uncountable cardinal tau and a subset S of an abelian group G, the following conditions are equivalent:
    (i) vertical bar{ns : s is an element of S}vertical bar >= tau for all integers n >= 1;
    (ii) there exists a group homomorphism pi : G -> T(2 tau) such that pi(S) is dense in T(2 tau).
    Moreover, if vertical bar G vertical bar <= 2(2 tau), then the following item can be added to this list:
    (iii) there exists an isomorphism pi : G -> G' between G and a subgroup G' of T(2 tau) such that pi(S) is dense in T(2 tau).
    We prove that the following conditions are equivalent for an uncountable subset S of an abelian group G that is either (almost) torsion-free or divisible:
    (a) S is T-dense in G for some Hausdorff group topology T on G;
    (b) S is T-dense in some precompact Hausdorff group topology T on G;
    (c) vertical bar{ns : s is an element of S}vertical bar >= min {tau : vertical bar G vertical bar <= 2(2 tau)} for every integer n >= 1.
    This partially resolves a question of Markov going back to 1946.

    DOI: 10.1090/S0002-9939-10-10302-5

    Web of Science

    researchmap

  • Group-valued continuous functions with the topology of pointwise convergence 査読

    Dmitri Shakhmatov, Jan Spevak

    TOPOLOGY AND ITS APPLICATIONS   157 ( 8 )   1518 - 1540   2010年6月

     詳細を見る

    記述言語:英語   掲載種別:研究論文(学術雑誌)   出版者・発行元:ELSEVIER SCIENCE BV  

    Let G be a topological group with the identity element e Given a space X, we denote by COX G) the group of all continuous functions from X to G endowed with the topology of pointwise convergence. and we say that X is (a) G-regular if, for each closed set F subset of X and every point x is an element of X \ F, there exist f is an element of C(p)(X G) and g is an element of G \ {e} such that f(x) = g and f (F} subset of {e}, (b) G* -regular provided that there exists g is an element of G \ {e} such that, for each closed set F subset of X and every point x is an element of X \ F, one can find f is an element of C(p)(X G) With f (x) - g and f (F) subset of {e} Spaces X and Y are G-equivalent provided that the topological groups C(p) (X, G) and C(p)(Y G) are topologically isomorphic.
    We investigate which topological properties are preserved by G-equivalence, with a special emphasis being placed on characterizing topological properties of X in terms of those of C(p)(X,G) Since -equivalence coincides with I-equivalence, this line of research "includes" major topics of the classical C(p)-theory of Arhangel' skill as a particular case (when G = R) We introduce a new class of TAP groups that contains all groups having no small subgroups (NSS groups) We prove that (i) for a given NSS group C. a G-regular space X is pseudocompact if and only if C(p)(X G) is TAP, and (n) for a metrizable NSS group G, a G*-regular space X is compact if and only if C(p)(X, G) is a TAp group of countable tightness In particular, a Tychonoff space X is pseudocompact (compact) if and only if Cp(X R) is a TAP group (of countable tightness) Demonstrating the limits of the result in (1), we give an example of a precompact TAP group G and a G-regular countably compact space X such that C(p)(X, G) is not TAP
    We show that Tychonoff spaces X and Y are T-equivalent if and only if their free precompact Abelian groups are topologically isomorphic, where T stays for the quotient group R/Z As a corollary, we obtain that T-equivalence implies G-equivalence for every Abelian precompact group G We establish that T-equivalence preserves the following topological properties compactness, pseudocompactness, sigma-compactness. the property of being a Lindelof Sigma-space. the property of being a compact metrizable space, the (finite) number of connected components, connectedness, total disconnectedness An example of R-equivalent (that is, l-equivalent) spaces that are not T-equivalent is constructed (C) 2009 Elsevier B V All rights reserved

    DOI: 10.1016/j.topol.2009.06.022

    Web of Science

    researchmap

  • Quasi-convex density and determining subgroups of compact abelian groups 査読

    Dikran Dikranjan, Dmitri Shakhmatov

    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS   363 ( 1 )   42 - 48   2010年3月

     詳細を見る

    記述言語:英語   掲載種別:研究論文(学術雑誌)   出版者・発行元:ACADEMIC PRESS INC ELSEVIER SCIENCE  

    For an abelian topological group G, let (G) over cap denote the dual group of all continuous characters endowed with the compact open topology. Given a closed subset X of an infinite compact abelian group G such that w(X) < w(G), and an open neighborhood U of 0 in T, we show that vertical bar{chi is an element of <(G)over cap>: chi(X) subset of U}vertical bar = vertical bar(G) over cap vertical bar. (Here, w(G) denotes the weight of G.) A subgroup D of G determines G if the map r: (G) over cap -> (D) over cap defined by r(chi) = chi (sic)D for chi is an element of(G) over cap, is an isomorphism between (G) over cap and (D) over cap. We prove that
    w(G) = min{vertical bar D vertical bar: D is a subgroup of G that determines G}
    for every infinite compact abelian group G. In particular, an infinite compact abelian group determined by a countable subgroup is metrizable. This gives a negative answer to a question of Comfort, Raczkowski and Trigos-Arrieta (repeated by Hernandez, Macario and Trigos-Arrieta). As an application, we furnish a short elementary proof of the result from [S. Hernandez, S. Macario, FJ. Trigos-Arrieta, Uncountable products of determined groups need not be determined, J. Math. Anal. Appl. 348 (2008) 834-842] that a compact abelian group G is metrizable provided that every dense subgroup of G determines G. (C) 2009 Elsevier Inc. All rights reserved.

    DOI: 10.1016/j.jmaa.2009.07.038

    Web of Science

    researchmap

  • Minimal pseudocompact group topologies on free abelian groups 査読

    Dikran Dikranjan, Anna Giordano Bruno, Dmitri Shakhmatov

    TOPOLOGY AND ITS APPLICATIONS   156 ( 12 )   2039 - 2053   2009年7月

     詳細を見る

    記述言語:英語   掲載種別:研究論文(学術雑誌)   出版者・発行元:ELSEVIER SCIENCE BV  

    A Hausdorff topological group G is minimal if every continuous isomorphism f : G -> H between G and a Hausdorff topological group H is open. Significantly strengthening a 1981 result of Stoyanov, we prove the following theorem: For every infinite minimal abelian group G there exists a sequence {sigma(n): n is an element of N} of cardinals such that
    w(G) = sup{sigma(n): n is an element of N} and sup{2(sigma n): n is an element of N} <= vertical bar G vertical bar <= 2(w(G)).
    where w(G) is the weight of G. If G is an infinite minimal abelian group, then either vertical bar G vertical bar = 2(sigma) for some cardinal sigma, or w(G) = min{sigma: vertical bar G vertical bar <= 2(sigma)}: moreover, the equality vertical bar G vertical bar = 2(w(G)) holds whenever cf(w(G)) > omega.
    For a cardinal kappa, we denote by F(kappa) the free abelian group with kappa many generators, if F(kappa) admits a pseudocompact group topology, then kappa >= c, where c is the cardinality of the continuum. We show that the existence of a minimal pseudocompact group topology oil F(c) is equivalent to the Lusin's Hypothesis 2(omega 1) = c. For kappa > c, we prove that F(kappa) admits a (zero-dimensional) minimal pseudocompact group topology if and only if F(kappa) has both a minimal group topology and a pseudocompact group topology. If K > C, then F, admits a connected minimal pseudocompact group topology of weight sigma if and only if kappa = 2(sigma). Finally, we establish that no infinite torsion-free abelian group can be equipped with a locally connected minimal group topology. (C) 2009 Elsevier B.V. All rights reserved.

    DOI: 10.1016/j.topol.2009.03.028

    Web of Science

    arXiv

    researchmap

  • Building suitable sets for locally compact groups by means of continuous selections 査読

    Dmitri Shakhmatov

    TOPOLOGY AND ITS APPLICATIONS   156 ( 7 )   1216 - 1223   2009年4月

     詳細を見る

    記述言語:英語   掲載種別:研究論文(学術雑誌)   出版者・発行元:ELSEVIER SCIENCE BV  

    If a discrete subset S of a topological group G with the identity I generates a dense subgroup of G and S boolean OR (1) is closed in G, then S is called a suitable set for G. We apply Michael's selection theorem to offer a direct, self-contained, purely topological proof of the result of Hofmann and Morris [K.-H. Hofmann, S.A. Morris, Weight and c, J. Pure Appl. Algebra 68 (1-2) (1990) 181-194] on the existence of suitable sets in locally compact groups. Our approach uses only elementary facts from (topological) group theory. (C) 2008 Elsevier B.V. All rights reserved.

    DOI: 10.1016/j.topol.2008.12.009

    Web of Science

    arXiv

    researchmap

  • Reflection principle characterizing groups in which unconditionally closed sets are algebraic 査読

    Dikran Dikranjan, Dmitri Shakhmatov

    JOURNAL OF GROUP THEORY   11 ( 3 )   421 - 442   2008年

     詳細を見る

    記述言語:英語   掲載種別:研究論文(学術雑誌)   出版者・発行元:WALTER DE GRUYTER & CO  

    We give a necessary and sufficient condition, in terms of a certain :reflection principle, for every unconditionally closed subset of a group G to be algebraic. As a corollary, we prove that this is always the case when G is a direct product of an Abelian group with a direct product (sometimes also called a direct sum) of a family of countable groups. This is the widest class of groups known to date where the answer to the 63-year-old problem of Markov turns out to be positive. We also prove that whether every unconditionally closed subset of G is algebraic or not is completely determined by countable subgroups of G. Essential connections with non-topologizable groups are highlighted.

    DOI: 10.1515/JGT.2008.025

    Web of Science

    arXiv

    researchmap

  • Weight of closed subsets topologically generating a compact group

    Dikran Dikranjan, Dmitri Shakhmatov

    MATHEMATISCHE NACHRICHTEN   280 ( 5-6 )   505 - 522   2007年

     詳細を見る

    記述言語:英語   掲載種別:研究論文(学術雑誌)   出版者・発行元:WILEY-V C H VERLAG GMBH  

    Let G be a compact Hausdorff group. A subspace X of G topologically generates G if G is the smallest closed subgroup of G containing X. Define
    tgw(G) = w - min{w(X) : X is closed in G and topologically generates G},
    where w(X) is the weight of X, i.e., the smallest size of a base for the topology of X. We prove that: (i) tgw (G) = w(G) if G is totally disconnected, (ii) tgw(G) = w root w(G) = min{tau >= w : w(G) <= tau(w)} in case G is connected, and (iii) tgw(G) = w(G/c(G)) . w root w(c(G)), where c(G) is the connected component of G.
    If G is connected, then either tgw (G) = w(G), or cf (tgw(G)) = w (and, moreover, w(G) = tgw(G)(+) under the Singular Cardinal Hypothesis).
    We also prove that tgw(G) = w . min{vertical bar X vertical bar : X subset of G is a compact Hausdorff space with at most one non-isolated point topologically generating G}. (c) 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

    DOI: 10.1002/mana.200410499

    Web of Science

    researchmap

  • Selected Topics from the Structure Theory of Topological Groups

    Dikran Dikranjan, Dmitri Shakhmatov

    Open Problems in Topology II   389 - 406   2007年

     詳細を見る

    記述言語:英語   掲載種別:論文集(書籍)内論文   出版者・発行元:Elsevier  

    This chapter discusses selected topics from the structure theory of topological groups. It contains open problems and questions covering the a number of topics including: the dimension theory of topological groups, pseudocompact and countably compact group topologies on Abelian groups, with or without nontrivial convergent sequences, categorically compact groups, sequentially complete groups, the Markov-Zariski topology, the Bohr topology, and transversal group topologies. All topological groups considered in this chapter are assumed to be Hausdorff. It is stated that Abelian group G is algebraically compact provided that an Abelian group H is found such that G ×. H admits a compact group topology. Algebraically compact groups form a relatively narrow subclass of Abelian groups (for example, the group ℤ of integers is not algebraically compact). On the other hand, every Abelian group G is algebraically pseudo-compact
    that is, an Abelian group H can be found such that G ×. H ∈. P. Problems and questions related to Bohr-homeomorphic bounded Abelian groups are also discussed in the chapter. © 2007 Elsevier B.V. All rights reserved.

    DOI: 10.1016/B978-044452208-5/50041-7

    Scopus

    researchmap

  • Forcing hereditarily separable compact-like group topologies on Abelian groups

    D Dikranjan, D Shakhmatov

    TOPOLOGY AND ITS APPLICATIONS   151 ( 1-3 )   2 - 54   2005年6月

     詳細を見る

    記述言語:英語   掲載種別:研究論文(学術雑誌)   出版者・発行元:ELSEVIER SCIENCE BV  

    Let c denote the cardinality of the continuum. Using forcing we produce a model of ZFC + CH with 2(c) "arbitrarily large" and, in this model, obtain a characterization of the Abelian groups G (necessarily of size at most 2(c)) which admit:
    (i) a hereditarily separable group topology,
    (ii) a group topology making G into an S-space,
    (iii) a hereditarily separable group topology that is either precompact, or pseudocompact, or countably compact (and which can be made to contain no infinite compact subsets),
    (iv) a group topology making G into an S-space that is either precompact, or pseudocompact, or countably compact (and which also can be made without infinite compact subsets if necessary).
    As a by-product, we completely describe the algebraic structure of the Abelian groups of size at most 2(c) which possess, at least consistently, a countably compact group topology (without infinite compact subsets, if desired).
    We also put to rest a 1980 problem of van Douwen about the cofinality of the size of countably compact Abelian groups. (c) 2004 Elsevier B.V. All rights reserved.

    DOI: 10.1016/j.topol.2004.07.012

    Web of Science

    researchmap

  • Examples concerning extensions of continuous functions

    C Costantini, D Shakhmatov

    TOPOLOGY AND ITS APPLICATIONS   143 ( 1-3 )   189 - 208   2004年8月

     詳細を見る

    記述言語:英語   掲載種別:研究論文(学術雑誌)   出版者・発行元:ELSEVIER SCIENCE BV  

    Given a space Y, let us say that a space X is a total extender for Y provided-that every continuous map f : A --> Y defined on a subspace A of X admits a continuous extension (f) over tilde : X --> Y over X. The first author and Alberto Marcone proved that a space X is hereditarily extremally disconnected and hereditarily normal if and only if it is a total extender for every compact metrizable space Y, and asked whether the same result holds without any assumption of metrizability on Y. We demonstrate that a hereditarily extremally disconnected, hereditarily normal, non-collectionwise Hausdorff space X constructed by Kenneth Kunen is not a total extender for K, the one-point compactification of the discrete space of size omega(1). Under the assumption 2(omega0) = 2(omega1), we provide an example of a separable, hereditarily extremally disconnected, hereditarily normal space X that is not a total extender for K. Furthermore, using forcing we prove that, in the generic extension of a model of ZFC + MA(omega(1)), every first-countable separable space X of size omega(1) has a finer topology tau on X such that (X, tau) is still separable and fails to be a total extender for K. We also show that a hereditarily extremally disconnected, hereditarily separable space X satisfying some stronger form of hereditary normality (so-called structural normality) is a total extender for every compact Hausdorff space, and we give a non-trivial example of such an X. (C) 2004 Elsevier B.V. All rights reserved.

    DOI: 10.1016/j.topol.2004.02.016

    Web of Science

    researchmap

  • Transversal and T-1-independent topologies 査読

    D Shakhmatov, M Tkachenko, RG Wilson

    HOUSTON JOURNAL OF MATHEMATICS   30 ( 2 )   421 - 433   2004年

     詳細を見る

    記述言語:英語   掲載種別:研究論文(学術雑誌)   出版者・発行元:UNIV HOUSTON  

    A pair tau(1), tau(2) of T-1 topologies on an infinite set X is called T-1-independent if their intersection tau(1) boolean AND tau(2) is the cofinite topology, and transversal if the union tau(1) boolean OR tau(2) generates the discrete topology. We show that every Hausdorff space admits a transversal compact Hausdorff topology. Then we apply Booth's Lemma to prove that no infinite set of cardinality less than 2(omega) admits a pair of T-1-independent Hausdorff topologies. This answers, in a strong form, a question posed by S. Watson in 1996. It is shown in ZFC that betaomega\omega is a self T-1-independent compact Hausdorff space, but the existence of self T-1-independent compact Hausdorff spaces of cardinality 2(omega) is both consistent with and independent of ZFC.

    Web of Science

    researchmap

  • A characterization of compactly generated metric groups

    H Fujita, D Shakhmatov

    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY   131 ( 3 )   953 - 961   2003年

     詳細を見る

    記述言語:英語   掲載種別:研究論文(学術雑誌)   出版者・発行元:AMER MATHEMATICAL SOC  

    Recall that a topological group G is: ( a) sigma-compact if G = boolean OR{K-n : n epsilon N} where each K-n is compact, and ( b) compactly generated if G is algebraically generated by some compact subset of G. Compactly generated groups are sigma - compact, but the converse is not true: every countable nonfi nitely generated discrete group ( for example, the group of rational numbers or the free ( Abelian) group with a countable in finite set of generators) is a counterexample. We prove that a metric group G is compactly generated if and only if G is sigma - compact and for every open subgroup H of G there exists a finite set F such that F boolean OR H algebraically generates G. As a corollary, we obtain that a sigma - compact metric group G is compactly generated provided that one of the following conditions holds: ( i) G has no proper open subgroups, ( ii) G is dense in some connected group ( in particular, if G is connected itself), ( iii) G is totally bounded (= subgroup of a compact group). Our second major result states that a countable metric group is compactly generated if and only if it can be generated by a sequence converging to its identity element ( eventually constant sequences are not excluded here). Therefore, a countable metric group G can be generated by a ( possibly eventually constant) sequence converging to its identity element in each of the cases ( i), ( ii) and ( iii) above. Examples demonstrating that various conditions cannot be omitted or relaxed are constructed. In particular, we exhibit a countable totally bounded group which is not compactly generated.

    DOI: 10.1090/S0002-9939-02-06736-9

    Web of Science

    researchmap

  • A compact Hausdorff topology that is a T-1-complement of itself

    D Shakhmatov, M Tkachenko

    FUNDAMENTA MATHEMATICAE   175 ( 2 )   163 - 173   2002年

     詳細を見る

    記述言語:英語   掲載種別:研究論文(学術雑誌)   出版者・発行元:POLISH ACAD SCIENCES INST MATHEMATICS  

    Topologies tau(1) and tau(2) on a set X are called T-1-complementary tau(1) boolean AND tau(2) = {X \ F : F subset of X is finite} boolean OR {0} and tau(1) boolean OR tau(2) is a subbase for the discrete topology on X. Topological spaces (X, tau(X)) and (Y, tau(Y)) are called T-1-complementary provided that there exists a bijection f : X --> Y such that tau(X) and {f(-1)(U) : U is an element of tau(Y)} are T-1-complementary topologies on X. We provide an example of a compact Hausdorff space of size 2(c) which is T-1-complementary to itself (c denotes the cardinality of the continuum). We prove that the existence of a compact Hausdorff space of size c that is T-1-complementary to itself is both consistent with and independent of ZFC. On the other hand, we construct in ZFC a countably compact Tikhonov space of size c which is T-1-complementary to itself and a compact Hausdorff space of size c which is T-1-complementary to a countably compact Tikhonov space. The last two examples have the smallest possible size: It is consistent with ZFC that c is the smallest cardinality of an infinite set admitting two Hausdorff T-1-complementary topologies [8]. Our results provide complete solutions to Problems 160 and 161 (both posed by S. Watson [14]) from Open Problems in Topology (North-Holland, 1990).

    Web of Science

    researchmap

  • Convergence in the presence of algebraic structure

    Recent Progress in General Topology Ⅱ, North-Molland   463 - 484   2002年

     詳細を見る

  • Topological Groups with Dense Compactly-generated Subgroups

    Applied General Topology   3 ( 1 )   85 - 89   2002年

     詳細を見る

  • Strengthening connected Tychonoff topologies

    Applied General Topology   3   113 - 131   2002年

     詳細を見る

  • Baire isomorphisms at the first level and dimension

    DB Shakhmatov

    TOPOLOGY AND ITS APPLICATIONS   107 ( 1-2 )   153 - 159   2000年10月

     詳細を見る

    記述言語:英語   掲載種別:研究論文(学術雑誌)   出版者・発行元:ELSEVIER SCIENCE BV  

    For a topological space X let Z(sigma)(X) denote the family of subsets of X which can be represented as a union of countably many zero-sets. A bijection h :X --> Y between topological spaces X and Y is a first level Baire isomorphism if f(Z) is an element of Z(sigma)(Y) and f(-1)(Z') is an element of Z(sigma)(X) whenever Z is an element of Z(sigma)(X) and Z' is an element of Z(sigma)(Y) A space is sigma-(pseudo)compact if it can be represented as the union of a countable family consisting of its (pseudo)compact subsets. Generalizing results of Jayne, Rogers and Chigogidze we show that first level Baire isomorphic, sigma-pseudocompact (in particular, sigma-compact) Tychonoff spaces have the same covering dimension dim. (C) 2000 Elsevier Science B.V. All rights reserved.

    Web of Science

    researchmap

  • A comparative survey of selected results and open problems concerning topological groups, fields and vector spaces

    D Shakhmatov

    TOPOLOGY AND ITS APPLICATIONS   91 ( 1 )   51 - 63   1999年1月

     詳細を見る

    記述言語:英語   掲載種別:研究論文(学術雑誌)   出版者・発行元:ELSEVIER SCIENCE BV  

    It is natural to expect that the behaviour of some topological properties tends to improve in the presence of an additional algebraic structure interacting with the topology (for example, in topological groups, topological fields, or topological vector spaces). The purpose of this survey is to compare topological groups, topological vector spaces and topological fields as to how far each of these classes of spaces is from the class of Tychonoff spaces. In other words, we want to compare the degree of how much of an additional strain an algebraic structure of a group, vector space or field which agrees with the topology of the space imposes on the topology of that space. We cover selected results and open problems related to normality-type properties, covering properties, Cartesian products, homeomorphic embeddings and dimension theory. (C) 1999 Elsevier Science B.V. All rights reserved.

    Web of Science

    researchmap

  • A categorical version of the Lefschets-Nobeling-Pontryagin theorem on embedding compacts in R-n

    DB Shakhmatov

    TOPOLOGY AND ITS APPLICATIONS   85 ( 1-3 )   345 - 349   1998年5月

     詳細を見る

    記述言語:英語   掲載種別:研究論文(学術雑誌)   出版者・発行元:ELSEVIER SCIENCE BV  

    For a category K we use Ob(K) to denote the class of all objects of K:, if X, Y is an element of Ob(K), then Mor(K)(X, Y) is the set of all K-morphisms from X into Y. Let PA and a be subcategories of the category of all topological spaces and their continuous maps. We say that a covariant functor F:A --> B is an embedding functor if there exists a class (i(X): X is an element of Ob(A)} satisfying the following conditions: (i) i(x) :X --> F(X) is a homeomorphic embedding for every X is an element of Ob(A), and (ii) if X, Y is an element of Ob(A) and f is an element of Mor(K)(X, Y), then F(S) o i(X) = i(Y) o f. For a natural number n let C(n) denote the category of all n-dimensional compact metric spaces and their continuous maps. Let G(< infinity) be the category of all Hausdorff finite-dimensional topological groups and their continuous group homomorphisms. We prove that there is no embedding covariant functor F:C(1) --> G(< infinity), but there exists a covariant embedding functor F:C(0) --> G(0), where G(0) is the category consisting of the single (zero-dimensional) compact metric group Z(2)(omega) and all its continuous group homomorphisms into ifself i.e., Ob(G(0)) = {Z(2)(w)) and MorG((0))(Z(2)(omega),Z(2)(omega)) is the set of all continuous group homomorphisms from Z(2)(omega) into Z(2)(omega). (C) 1998 Elsevier Science B.V.

    Web of Science

    researchmap

  • Algebraic structure of pseudocompact groups 査読

    D Dikranjan, D Shakhmatov

    MEMOIRS OF THE AMERICAN MATHEMATICAL SOCIETY   133 ( 633 )   VIII - 83   1998年5月

     詳細を見る

    記述言語:英語   掲載種別:研究論文(学術雑誌)   出版者・発行元:AMER MATHEMATICAL SOC  

    Looking for a natural generalization of compact spaces, in 1948 Hewitt introduced pseudocompact spaces as those Tychonoff spaces on which every real-valued continuous function is bounded. The algebraic structure of compact Abelian groups was completely described in the fifties and sixties by Kaplansky, Harrison and Hulanicki. In this paper we study systematically the algebraic structure of pseudocompact groups, or equivalently, the following problem: Which groups can be equipped with a pseudocompact topology turning them into topological groups? We solved this problem completely for the following classes of groups: free groups and free Abelian groups (or more generally, free groups in some variety of abstract groups), torsionfree Abelian groups (or even Abelian groups G with \G\ = r(G)), torsion Abelian groups, and divisible Abelian groups.
    Even though out main problem deals with the existence of some topologies on groups, it has a strong set-theoretic flavor. Indeed, the existence of an infinite pseudocompact group of cardinality tau and weight sigma is equivalent to the following purely set-theoretic condition Ps(tau, sigma) introduced by Cater, Erdos and Galvin for entirely different purposes: The set {0, 1)(sigma) of all functions from (a set of cardinality) a to the two-point set {0, 1} contains a subset of size tau whose projection on every countable subproduct {0, 1}(A) is a surjection. Despite its innocent look, the problem of which cardinals sigma and tau enjoy such a relationship is far from being solved, and is closely related to the Singular Cardinal Hypothesis.
    A variety of necessary conditions, both of algebraic and of set-theoretic nature, for the existence of a pseudocompact group topology on a group is discovered. For example, pseudocompact torsion groups are locally finite. If an infinite Abelian group G admits a pseudocompact group topology of weight sigma, then either r(p)(r(G),a) or Ps(rp(G),a) for some prime number p must hold, where r(G) and rp(G) are the free rank and the prank of G respectively. If an Abelian group G has a pseudocompact group topology, then \{ng : g is an element of G}\ less than or equal to 2(2r(G)) for some n. This yields the inequality \G\ less than or equal to 2(2r(G)) for a divisible pseudocompact group.
    Turning to necessary and sufficient conditions, we show that a nontrivial Abelian group G admits a connected pseudocompact group topology of weight a if and only if \G\ less than or equal to 2(sigma) and Ps(r(G),sigma) hold. Moreover, a free group with tau generators in a variety nu of groups admits a pseudocompact group topology if and only if Ps(tau, sigma) holds for some infinite sigma, and the variety nu is generated by its finite groups. It should be noted that most of the classical varieties of groups have the last property, the only exception the authors are aware of being the Burnside varieties B-n for odd n > 665.

    Web of Science

    researchmap

  • Neither first countable nor Cech complete spaces are maximal Tychonoff connected

    DB Shakhmatov, MG Tkacenko, VV Tkachuk, S Watson, RG Wilson

    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY   126 ( 1 )   279 - 287   1998年1月

     詳細を見る

    記述言語:英語   掲載種別:研究論文(学術雑誌)   出版者・発行元:AMER MATHEMATICAL SOC  

    A connected Tychonoff space X is called maximal Tychonoff connected if there is no strictly finer Tychonoff connected topology on X. We show that if X is a connected Tychonoff space and X is an element of {locally separable spaces, locally Cech-complete spaces, first countable spaces}, then X is not maximal Tychonoff connected. This result is new even in the cases where X is compact or metrizable.

    Web of Science

    researchmap

  • A relatively free topological group that is not vazietal free

    Colloquium Mathematicum   77   1 - 8   1998年

     詳細を見る

  • Spaces which have finitely many continuous selections.

    T Nogura, D Shakhmatov

    BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA   11A ( 3 )   723 - 729   1997年10月

     詳細を見る

    記述言語:英語   掲載種別:研究論文(学術雑誌)   出版者・発行元:UNIONE MAT ITAL  

    Web of Science

    researchmap

  • Characterizations of intervals via continuous selections

    Tsugunori Nogura, Dmitri Shakhmatov

    Rendiconti del Circolo Matematico di Palermo   46 ( 2 )   317 - 328   1997年6月

     詳細を見る

    記述言語:英語   掲載種別:研究論文(学術雑誌)  

    We prove that: (i) a pathwise connected, Hausdorff space which has a continuous selection is homeomorphic to one of the following four spaces: singleton, [0,1), [0,1] or the long line L, (ii) a locally connected (Hausdorff) space which has a continuous selection must be orderable, and (iii) an infinite connected, Hausdorff space has exactly two continuous selections if and only if it is compact and orderable. We use these results to give various characterizations of intervals via continuous selections. For instance, (iv) a topological space X is homeomorphic to [0,1] if (and only if)X is infinite, separable, connected, Hausdorff space and has exactly two continuous selections, and (v) a topological spaceX is homeomorphic to [0,1) if (and only if) one of the following equivalent conditions holds: (a) X is infinite, Hausdorff, separable, pathwise connected and has exactly one continuous selection
    (b) X is infinite, separable, locally connected and has exactly one continuous selection
    (c) X is infinite, metric, locally connected and has exactly one continuous selection. Three examples are exhibited which demonstrate the necessity of various assumptions in our results. © 1997 Springer.

    DOI: 10.1007/BF02977032

    Scopus

    researchmap

  • A-propecty versesα<sub>4</sub>-Pcopecty in topological Spaces and groups

    Studia Scientiazum Mathematicazum Mungazica   33   351 - 362   1997年

     詳細を見る

  • Haar nonmeasurable partitions of compact goups

    ITZKOWITZ G. L.

    Tsukuba Journal of Mathematics   21 ( 7 )   251 - 262   1997年

     詳細を見る

  • Dense countably compact nulgroups of compact groups

    Mathematica Japonica   45 ( 3 )   1 - 5   1997年

     詳細を見る

  • A characterization of Dugundji spaces via set-valued maps

    Dmitri Shakhmatov, Vesko Valov

    TOPOLOGY AND ITS APPLICATIONS   74 ( 1-3 )   109 - 121   1996年12月

     詳細を見る

    記述言語:英語   掲載種別:研究論文(学術雑誌)   出版者・発行元:ELSEVIER SCIENCE BV  

    We characterize Lindelof p-spaces which are absolute extensors for zero-dimensional perfectly normal spaces. As an application we prove that a Lindelof Cech-complete space X is an absolute extensor for zero-dimensional spaces if and only if there exists an upper semi-continuous compact-valued map r : X(3) -&gt; X such that r(x, y, y) = r(y, y, x) = {x} for all x, y is an element of X. This result is new even when applied to compact spaces and yields the following new characterization of Dugundji spaces: A compact Hausdorff space X is Dugundji if and only if there exists an upper semi-continuous compact-valued map r : X(3) -&gt; X such that r(x, y, y) = r(y, y, x) = {x} for all x, y is an element of X. It is worth noting that, by a result of Uspenskij, in the above characterization of Dugundji spaces the set-valued map r cannot be replaced by a single-valued (continuous) map, the 5-dimensional sphere S(5) being a counterexample.

    Web of Science

    researchmap

  • A characterization of Dugundji spaces via set-valued maps 査読

    Dmitri Shakhmatov, Vesko Valov

    TOPOLOGY AND ITS APPLICATIONS   74 ( 1-3 )   109 - 121   1996年12月

     詳細を見る

    記述言語:英語   掲載種別:研究論文(学術雑誌)   出版者・発行元:ELSEVIER SCIENCE BV  

    We characterize Lindelof p-spaces which are absolute extensors for zero-dimensional perfectly normal spaces. As an application we prove that a Lindelof Cech-complete space X is an absolute extensor for zero-dimensional spaces if and only if there exists an upper semi-continuous compact-valued map r : X(3) -&gt; X such that r(x, y, y) = r(y, y, x) = {x} for all x, y is an element of X. This result is new even when applied to compact spaces and yields the following new characterization of Dugundji spaces: A compact Hausdorff space X is Dugundji if and only if there exists an upper semi-continuous compact-valued map r : X(3) -&gt; X such that r(x, y, y) = r(y, y, x) = {x} for all x, y is an element of X. It is worth noting that, by a result of Uspenskij, in the above characterization of Dugundji spaces the set-valued map r cannot be replaced by a single-valued (continuous) map, the 5-dimensional sphere S(5) being a counterexample.

    DOI: 10.1016/S0166-8641(96)00049-1

    Web of Science

    researchmap

  • When does the Fell topology on a hyperspace of closed sets coincide with the meet of the upper Kuratowski and the lower Vietoris topologies?

    T Nogura, D Shakhmatov

    TOPOLOGY AND ITS APPLICATIONS   70 ( 2-3 )   213 - 243   1996年6月

     詳細を見る

    記述言語:英語   掲載種別:研究論文(学術雑誌)   出版者・発行元:ELSEVIER SCIENCE BV  

    For a given topological space X we consider two topologies on the hyperspace F(X) of all closed subsets of X. The Fell topology T-F on F(X) is generated by the family {O-VK: V is open in X and K subset of or equal to X is compact} as a subbase, where O-VK = {F is an element of F(X): F boolean AND V not equal 0 and F boolean AND K = 0}. The topology T-F is always compact, regardless of the space X. The Kuratowski topology T-K is the smallest topology on F(X) which contains both the lower Vietoris topology T-iV, generated by the family { { F is an element of F(X): F\Phi not equal 0}: Phi is an element of F(X)} as a subbase, and the upper Kuratowski topology T-uK, which is the strongest topology on F(X) such that upper Kuratowski-Painleve convergence of an arbitrary net of closed subsets of X to some closed set A implies that the same net, considered as a net of points of the topological space (F(X),T-uK), converges in this space to the point A. [Recall that a net [A(lambda)](lambda is an element of Lambda) subset of or equal to F(X) upper Kuratowski-Painleve converges to A if boolean AND{&lt;(boolean OR{A(mu):mu greater than or equal to lambda}:)over bar lambda is an element of Lambda&gt;} subset of or equal to A.] The inclusion T-F subset of or equal to T-K holds for an arbitrary space X, while the equation T-F = T-K is equivalent to consonance of X, the notion recently introduced by Dolecki, Greco and Lechicki. These three authors showed that complete metric spaces are consonant. In our paper we give an example of a metric space with the Faire property which is not consonant. We also demonstrate that consonance is a delicate property by providing an example of two consonant spaces X and Y such that their disjoint union X+Y is not consonant. In particular, locally consonant spaces need not be consonant.

    Web of Science

    researchmap

  • When does the fell topology on a hyperspace of closed sets coincide with the meet of the upper Kuratowski and the lower vietoris topologies?

    Tsugunori Nogura, Dmitri Shakhmatov

    Topology and its Applications   70 ( 2-3 )   213 - 243   1996年

     詳細を見る

    記述言語:英語   掲載種別:研究論文(学術雑誌)   出版者・発行元:Elsevier  

    For a given topological space X we consider two topologies on the hyperspace F(X) of all closed subsets of X. The Fell topology ΤF on F(X) is generated by the family {OVK: V is open in X and K ⊆ X is compact} as a subbase, where OVK = {F ∈ F(X): F ∩ V ≠ ø and F ∩ K = ø}. The topology ΤF is always compact, regardless of the space X. The Kuratowski topology ΤK is the smallest topology on F(X) which contains both the lower Vietoris topology ΤIV, generated by the family { { F ∈ F(X): F \\ Φ ≠ ø}: Φ ∈ F(X)} as a subbase, and the upper Kuratowski topology ΤuK, which is the strongest topology on F(X) such that upper Kuratowski-Painlevé convergence of an arbitrary net of closed subsets of X to some closed set A implies that the same net, considered as a net of points of the topological space (F(X), ΤuK), converges in this space to the point A. [Recall that a net 〈Aλ〉λ∈Λ ⊆ F(X) upper Kuratowski-Painlevé converges to A if ∩{∪{Aμ μ ≥ λ}: λ ∈ Λ.] The inclusion ΤF ⊆ ΤK holds for an arbitrary space X, while the equation ΤF = ΤK is equivalent to consonance of X, the notion recently introduced by Dolecki, Greco and Lechicki. These three authors showed that complete metric spaces are consonant. In our paper we give an example of a metric space with the Baire property which is not consonant. We also demonstrate that consonance is a delicate property by providing an example of two consonant spaces X and Y such that their disjoint union X ⊕ Y is not consonant. In particular, locally consonant spaces need not be consonant. © 1996 Elsevier Science B.V. All rights reserved.

    DOI: 10.1016/0166-8641(95)00098-4

    Scopus

    researchmap

  • Electronic access for topology resources 査読

    B Brechner, M Mislove, D Shakhmatov, S Watson

    PAPERS ON GENERAL TOPOLOGY AND APPLICATIONS   788   1 - 8   1996年

     詳細を見る

    記述言語:英語   掲載種別:研究論文(学術雑誌)   出版者・発行元:NEW YORK ACAD SCIENCES  

    Web of Science

    researchmap

  • AMALGAMATION OF CONVERGENT SEQUENCES IN LOCALLY COMPACT-GROUPS

    T NOGURA, D SHAKHMATOV

    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE   320 ( 11 )   1349 - 1354   1995年6月

     詳細を見る

    記述言語:英語   掲載種別:研究論文(学術雑誌)   出版者・発行元:GAUTHIER-VILLARS  

    Following Arhangel'skii we say that a space X has the alpha(1)-property (alpha(4)-property respectively) if for every countable family {S-n : n is an element of N} of infinite sequences converging to some point x is an element of X there exists a [diagonal] sequence S converging to x such that S-n\S is finite for all n is an element of N (such that S intersects infinitely many S-n respectively). We show that, while different for general topological groups, these two converging properties coincide for locally compact groups, and for such groups are also equivalent to the so-called Ramsey property. We also establish that, under some additional set-theoretic assumption beyond the classical Zermelo-Fraenkel axioms ZFC of set theory, every locally compact group with (any of the two) amalgamation properties mentioned above is metric, and that at least some extra set-theoretic assumption beyond ZFC is necessary for the last result.

    Web of Science

    researchmap

  • A universal complete metric Abelian group of a given weight

    D Shakhmatov, J Pelant, S Watson

    TOPOLOGY WITH APPLICATIONS   4   431 - 439   1995年

     詳細を見る

    記述言語:英語   掲載種別:研究論文(国際会議プロシーディングス)   出版者・発行元:BOLYAI JANOS MATEMATIKA TARSULAT  

    Web of Science

    researchmap

  • LARGE FAMILIES OF DENSE PSEUDOCOMPACT SUBGROUPS OF COMPACT-GROUPS

    G ITZKOWITZ, D SHAKHMATOV

    FUNDAMENTA MATHEMATICAE   147 ( 3 )   197 - 212   1995年

     詳細を見る

    記述言語:英語   掲載種別:研究論文(学術雑誌)   出版者・発行元:POLISH ACAD SCIENCES INST MATHEMATICS-IMPAN  

    We prove that every nonmetrizable compact connected Abelian group G has a family H of size \G\, the maximal size possible, consisting of proper dense pseudocompact subgroups of G such that H boolean AND H' = {0} for distinct H, H' is an element of H. An easy example shows that connectedness of G is essential in the above result. In the general case we establish that every nonmetrizable compact Abelian group G has a family H of size \G\ consisting of proper dense pseudocompact subgroups of G such that each intersection H boolean AND H' of different members of H is nowhere dense in G. Some results in the non-Abelian case are also given.

    Web of Science

    researchmap

  • A direct proof that every infinite compact groups G contains {0, 1}<sup>W(G)</sup>

    SHAKHMATOV D B

    Annals of the New York Academy of Sciences   728   276 - 283   1994年

  • Factorization of mappings of topological spaces and homomorphsms of topological groups with respect to weight and dimension

    Trudy seminara imeni I. G. Petrouskogo   17   1994年

     詳細を見る

  • METRIZABILITY OF TOPOLOGICAL-GROUPS HAVING WEAK TOPOLOGIES WITH RESPECT TO GOOD COVERS

    T NOGURA, DB SHAKHMATOV, Y TANAKA

    TOPOLOGY AND ITS APPLICATIONS   54 ( 1-3 )   203 - 212   1993年12月

     詳細を見る

    記述言語:英語   掲載種別:研究論文(学術雑誌)   出版者・発行元:ELSEVIER SCIENCE BV  

    A cover C of a topological space X is point-countable (point-finite) if every point of X belongs to at most countably many (at most finitely many) elements of C. We say that a space X has the weak topology with respect to a cover C provided that a set F subset-or-equal-to X is closed in X if and only if its intersection F and C with every C is-an-element-of C is closed in C. A space X is an alpha4-space if for every point x is-an-element-of X and any countable family {S(n): n is-an-element-of N} of sequences converging to x one can find a sequence S converging to x which meets infinitely many S(n).
    The classical Birkhoff-Kakutani theorem says that a Hausdorff topological group is metrizable if (and only if) it is first countable. Quite recently Arhangel'skii generalized this theorem by showing that Hausdorff bisequential topological groups are metrizable (recall that first countable spaces are bisequential). In our paper we generalize these results by showing that a Hausdorff topological group is metrizable if it has the weak topology with respect to a point-finite cover consisting of bisequential spaces. In addition we establish the following theorem each item of which also generalizes both Birkhoff-Kakutani's and Arhangel'skii's results: Theorem. Let G be a Hausdorff topological group which has the weak topology with respect to a point-countable cover C consisting of bisequential spaces. Then G is metrizable in each of the following cases: (i) G is an alpha4-space, (ii) C consists of closed subspaces and G does not contain a closed subspace homeomorphic to S(omega) (or equivalently, a closed subspace homeomorphic to S2). (iii) C is countable and increasing, and G contains no closed subspace homeomorphic to S(omega) (equivalently, no closed subspace homeomorphic to S2).
    Recall that S(omega) is the quotient space obtained from the union of a countable family of convergent sequences via identifying their limit points, and S2 is Arens' space, the standard sequential space of sequential order 2.

    Web of Science

    researchmap

  • A NOTE ON TRANSFINITE INDUCTIVE DIMENSIONS IN TOPOLOGICAL-GROUPS

    DB SHAKHMATOV

    TOPOLOGY AND ITS APPLICATIONS   54 ( 1-3 )   213 - 220   1993年12月

     詳細を見る

    記述言語:英語   掲載種別:研究論文(学術雑誌)   出版者・発行元:ELSEVIER SCIENCE BV  

    We make few observations about the specific behaviour of transfinite inductive dimensions in topologically homogeneous spaces and topological groups. Two main results, are: (i) If the large transfinite inductive dimension trInd X of a homogeneous normal space X is defined, then either ind X is finite or X is countably compact. (ii) If G is a normal topological group having the large transfinite inductive dimension trInd G, then ind G is finite.

    Web of Science

    researchmap

  • PSEUDOCOMPACT AND COUNTABLY COMPACT ABELIAN-GROUPS - CARTESIAN PRODUCTS AND MINIMALITY

    DN DIKRANJAN, DB SHAKHMATOV

    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY   335 ( 2 )   775 - 790   1993年2月

     詳細を見る

    記述言語:英語   掲載種別:研究論文(学術雑誌)   出版者・発行元:AMER MATHEMATICAL SOC  

    Denote by G the class of all Abelian Hausdorff topological groups. A group G is-an-element-of G is minimal (totally minimal) if every continuous group isomorphism (homomorphism) i: G --&gt; H of G onto H is-an-element-of G is open. For G is-an-element-of G let K(G) be the smallest cardinal tau greater-than-or-equal-to 1 such that the minimality of G(tau) implies the minimality of all powers of G. For Q subset-of G, Q not-equal phi, we set kappa(Q) = sup{kappa(G): G is-an-element-of G} and denote by alpha(Q) the smallest cardinal tau greater-than-or-equal-to 1 having the following property: If {G(i): i is-an-element-of I} subset-of Q, I not-equal phi, and each subproduct PI{G(i): i is-an-element-of J}, with J subset-of 1, J not-equal phi, and Absolute value of J less-than-or-equal-to tau, is minimal, then the whole product PI{G(i): i is-an-element-of I} is minimal. These definitions are correct, and kappa(G) less-than-or-equal-to 2omega and kappa(Q) less-than-or-equal-to alpha(Q) less-than-or-equal-to 2omega for all G is-an-element-of G and any Q subset-of G, Q not-equal phi, while it can happen that kappa(Q) &lt; alpha(Q) for some Q subset-of G. Let C = {G is-an-element-of G : G is countably compact{ and P = {G is-an-element-of G: G is pseudocompact}. If G is-an-element-of C is minimal, then G x H is minimal for each minimal (not necessarily Abelian) group H ; in particular, G(n) is minimal for every natural number n . We show that alpha(C) = omega, and so either kappa(C) = 1 or kappa(C) = omega. Under Lusin's Hypothesis 2omega1 = 2omega we construct {G(n): n is-an-element-of N} subset-of P and H is-an-element-of P such that: (i) whenever n is-an-element-of N, G(n)n is totally minimal, but G(n)n+1 is not even minimal, so kappa(G(n)) = n+1 ; and (ii) H(n) is totally minimal for each natural number n , but H(omega) is not even minimal, so kappa(H) = omega. Under MA + -CH, conjunction of Martin's Axiom with the negation of the Continuum Hypothesis, we construct G is-an-element-of P such that G(tau) is totally minimal for each T &lt; 2omega, while G2omega is not Minimal, so kappa(G) = 2omega. This yields alpha(P) = kappa(P) = 2omega under MA + -CH. We also present an example of a noncompact minimal group G is-an-element-of C, which should be compared with the following result obtained by the authors quite recently: Totally minimal groups G is-an-element-of C are compact.

    Web of Science

    researchmap

  • COMPACT-LIKE TOTALLY DENSE SUBGROUPS OF COMPACT-GROUPS

    DN DIKRANJAN, DB SHAKHMATOV

    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY   114 ( 4 )   1119 - 1129   1992年4月

     詳細を見る

    記述言語:英語   掲載種別:研究論文(学術雑誌)   出版者・発行元:AMER MATHEMATICAL SOC  

    A subgroup H of a topological group G is (weakly) totally dense in G if for each closed (normal) subgroup N of G the set H the-intersection-of N is dense in N. We show that no compact (or more generally, omega-bounded) group contains a proper, totally dense, countably compact subgroup. This yields that a countably compact Abelian group G is compact if and only if each continuous homomorphism pi: G --&gt; H of G onto a topological group H is open. Here "Abelian" cannot be dropped. A connected, compact group contains a proper, weakly totally dense, countably compact subgroup if and only if its center is not a G(delta)-subgroup. If a topological group contains a proper, totally dense, pseudocompact subgroup, then none of its closed, normal G(delta)-subgroups is torsion. Under Lusin's hypothesis 2(omega)1 = 2(omega) the converse is true for a compact Abelian group G. If G is a compact Abelian group with nonmetrizable connected component of zero, then there are a dense, countably compact subgroup K of G and a proper, totally dense subgroup H of G with K is-contained-in-or-equal-to H (in particular, H is pseudocompact).

    Web of Science

    researchmap

  • Compact spaces and their generalizations

    Recent progress in General Topology   522 - 589   1992年

     詳細を見る

  • Pseudocompact topologies on groups

    Topology Proceedings   11   335 - 342   1992年

     詳細を見る

  • CARTESIAN PRODUCTS OF FRECHET TOPOLOGICAL-GROUPS AND FUNCTION-SPACES

    MALYHIN, VI, DB SHAKHMATOV

    ACTA MATHEMATICA HUNGARICA   60 ( 3-4 )   207 - 215   1992年

     詳細を見る

    記述言語:英語   掲載種別:研究論文(学術雑誌)   出版者・発行元:AKADEMIAI KIADO  

    Web of Science

    researchmap

  • Zerodimensionality of subgroups of locally compact groups

    Commentationes Mathematical Universitatis Catabinae   32   581 - 582   1991年

     詳細を見る

  • Final compactness and separability in regular symmetrizable spaces

    Trudy seminare imeni I. G. Petrouskogo   15   196 - 220   1991年

     詳細を見る

  • IMBEDDINGS INTO TOPOLOGICAL-GROUPS PRESERVING DIMENSIONS

    DB SHAKHMATOV

    TOPOLOGY AND ITS APPLICATIONS   36 ( 2 )   181 - 204   1990年8月

     詳細を見る

    記述言語:英語   掲載種別:研究論文(学術雑誌)   出版者・発行元:ELSEVIER SCIENCE BV  

    Web of Science

    researchmap

  • α<sub>i</sub>-properties in Frichet-Urysohu topological groups

    Topology Proceedings   15   143 - 183   1990年

     詳細を見る

  • Pseudocompact topologizations of groups

    Zbornik radous Filosofskog Fakulteta u Ni(]J1062[)u   4   83 - 93   1990年

     詳細を見る

  • Dugundji spaces and topological groups

    Commentations Mathematical Univ. Corolinal   31   129 - 143   1990年

     詳細を見る

  • PRODUCTS OF MINIMAL ABELIAN-GROUPS

    DN DIKRANJAN, DB SHAKHMATOV

    MATHEMATISCHE ZEITSCHRIFT   204 ( 4 )   583 - 603   1990年

     詳細を見る

    記述言語:英語   掲載種別:研究論文(学術雑誌)   出版者・発行元:SPRINGER VERLAG  

    Web of Science

    researchmap

  • CRITICAL POWER OF MINIMALITY OF TOPOLOGICAL-GROUPS CLOSE TO BEING COMPACT

    DN DIKRANJAN, DB SHAKHMATOV

    DOKLADI NA BOLGARSKATA AKADEMIYA NA NAUKITE   43 ( 10 )   13 - 15   1990年

     詳細を見る

    記述言語:英語   掲載種別:研究論文(学術雑誌)   出版者・発行元:ACAD BULGARE DES SCIENCES  

    Web of Science

    researchmap

  • A PROBLEM OF COINCIDENCE OF DIMENSIONS IN TOPOLOGICAL-GROUPS

    DB SHAKHMATOV

    TOPOLOGY AND ITS APPLICATIONS   33 ( 1 )   105 - 113   1989年9月

     詳細を見る

    記述言語:英語   掲載種別:研究論文(学術雑誌)   出版者・発行元:ELSEVIER SCIENCE BV  

    Web of Science

    researchmap

  • Zero-dimensionality of free topological groups and topological groups with non-coinciding dimensions

    Bulletin of Polish Academy of Sciences. Ser. Math.   37   497 - 506   1989年

     詳細を見る

  • On pointwise approximation of arbitrary functions by countable families of continuous functions

    Trudy seminara imeni I. G. Petrouskogo   13   206 - 227   1988年

     詳細を見る

  • Closed embeddings into pseudocompact spaces preserving dimensions

    Vestnik Moskouskogo Univ Ser I Matem. Mekh.   1   51 - 59   1988年

     詳細を見る

  • The structure of topological fields and cordinal invariants

    Trudy Moskouskogo Matematicheskogo Obschestua   50   249 - 259   1987年

     詳細を見る

  • A REGULAR SYMMETRIZABLE L-SPACE

    DB SHAKHMATOV

    DOKLADI NA BOLGARSKATA AKADEMIYA NA NAUKITE   40 ( 11 )   5 - 8   1987年

     詳細を見る

    記述言語:英語   掲載種別:研究論文(学術雑誌)   出版者・発行元:ACAD BULGARE DES SCIENCES  

    Web of Science

    researchmap

  • S-FIELDS AND L-FIELDS

    DB SHAKHMATOV

    VESTNIK MOSKOVSKOGO UNIVERSITETA SERIYA 1 MATEMATIKA MEKHANIKA   5 ( 5 )   72 - 73   1986年9月

     詳細を見る

    記述言語:ロシア語   出版者・発行元:MOSCOW STATE UNIV  

    Web of Science

    researchmap

  • PRECALIBERS OF SIGMA-COMPACT TOPOLOGICAL-GROUPS 査読

    DB SHAKHMATOV

    MATHEMATICAL NOTES   39 ( 5-6 )   465 - 470   1986年5月

     詳細を見る

    記述言語:英語   掲載種別:研究論文(学術雑誌)   出版者・発行元:PLENUM PUBL CORP  

    Web of Science

    researchmap

  • A PSEUDOCOMPACT TYCHONOFF SPACE ALL COUNTABLE SUBSETS OF WHICH ARE CLOSED AND C-STAR-EMBEDDED

    DB SHAKHMATOV

    TOPOLOGY AND ITS APPLICATIONS   22 ( 2 )   139 - 144   1986年3月

     詳細を見る

    記述言語:英語   掲載種別:研究論文(学術雑誌)   出版者・発行元:ELSEVIER SCIENCE BV  

    Web of Science

    researchmap

  • When is a space Cp (X)σ-countably Compact。

    Vestnik Moskouskogo Univ. Ser. I Motem. Mekh   1 ( 1 )   70 - 72   1986年1月

     詳細を見る

    記述言語:ロシア語  

    Web of Science

    researchmap

  • Precalibers of σ-compact groups

    Matematicheckie Zametki   39   859 - 868   1986年

     詳細を見る

  • Continuous Homomorplic images of groups with a countable base do not cover all groups with a countable network

    Vestnik Moskouskogo Univ. Ser. I Matem Mekh.   3   98 - 101   1986年

     詳細を見る

  • CHARACTER AND PSEUDOCHARACTER IN MINIMAL TOPOLOGICAL-GROUPS

    DB SHAKHMATOV

    MATHEMATICAL NOTES   38 ( 5-6 )   1003 - 1006   1985年11月

     詳細を見る

    記述言語:英語   掲載種別:研究論文(学術雑誌)   出版者・発行元:PLENUM PUBL CORP  

    Web of Science

    researchmap

  • PSEUDOCOMPACT SPACES WITH A POINT-COUNTABLE BASE

    DB SHAKHMATOV

    DOKLADY AKADEMII NAUK SSSR   279 ( 4 )   825 - 829   1984年

     詳細を見る

    記述言語:ロシア語   掲載種別:研究論文(学術雑誌)   出版者・発行元:MEZHDUNARODNAYA KNIGA  

    Web of Science

    researchmap

  • CONTINUOUS-MAPPINGS OF TOPOLOGICAL UNIVERSAL-ALGEBRAS PRESERVING CONTINUITY OF OPERATIONS AND DECREASING WEIGHT

    DB SHAKHMATOV

    VESTNIK MOSKOVSKOGO UNIVERSITETA SERIYA 1 MATEMATIKA MEKHANIKA   2 ( 2 )   42 - 45   1984年

     詳細を見る

    記述言語:ロシア語   掲載種別:研究論文(学術雑誌)   出版者・発行元:MOSCOW STATE UNIV  

    Web of Science

    researchmap

  • No upper found for cardinalities of Tychonoff C. C. C. spaces with a Gs-diagonal exists (An answer to J. Ginsburg and R. G Woods' question)

    Commendations Mathematical Universitatis Corolinal   25   731 - 746   1984年

     詳細を見る

  • Embeddings into topological fields and construction of field the space of which is not normal

    Comnentationes Mathematical Univ. Carolinae   24   525 - 540   1983年

     詳細を見る

  • CARDINAL INVARIANTS OF TOPOLOGICAL FIELDS

    DB SHAKHMATOV

    DOKLADY AKADEMII NAUK SSSR   271 ( 6 )   1332 - 1336   1983年

     詳細を見る

    記述言語:ロシア語   掲載種別:研究論文(学術雑誌)   出版者・発行元:MEZHDUNARODNAYA KNIGA  

    Web of Science

    researchmap

▼全件表示

書籍等出版物

  • Algebraic structure of Pseudocompact groups

    American Mathematical SocietyMemoucs of the American Mathemational Society  1998年 

     詳細を見る

MISC

▼全件表示

講演・口頭発表等

  • Zariski and (precompact) Markov topologies in free groups and their subgroups 招待

    Dmitri Shakhmatov

    2022年9月 

     詳細を見る

    開催年月日: 2022年9月

    記述言語:英語   会議種別:口頭発表(招待・特別)  

    researchmap

  • On Markov's problem for free groups

    Dmitri Shakhmatov

    2021年度ジェネラルトポロジーシンポジウム (高崎経済大学)  2021年12月 

     詳細を見る

    開催年月日: 2021年12月

    記述言語:英語   会議種別:口頭発表(一般)  

    researchmap

  • Unconditionally closed subsets of free (non-commutative) groups

    Dmitri B. Shakhmatov

    International Conference on Topology and its Applications dedicated to the 100th anniversary of the birthday of Yu. M. Smirnov (Moscow State University, Russia)  2021年9月 

     詳細を見る

    開催年月日: 2021年9月

    記述言語:英語   会議種別:口頭発表(一般)  

    researchmap

  • Subgroups of general linear groups as automorphism groups of dense subgroups of Euclidean groups

    2019年度ジェネラルトポロジーシンポジウム, J:comホルトホール大分  2019年12月 

     詳細を見る

    開催年月日: 2019年12月

    会議種別:口頭発表(一般)  

    researchmap

  • An infinite strongly reflexive, strongly self-dual, precompact abelian group 招待

    Dmitri Shakhmatov

    The Interdisciplinary Colloquium in Topology and its Applications (University of Vigo, Spain)  2019年6月 

     詳細を見る

    開催年月日: 2019年6月

    記述言語:英語   会議種別:口頭発表(基調)  

    researchmap

  • Topological groups in which all non-trivial cyclic subgroups are dense

    一般位相幾何学の発展と諸分野との連携 RIMS 共同研究(公開型)  2019年6月 

     詳細を見る

    開催年月日: 2019年6月

    会議種別:口頭発表(一般)  

    researchmap

  • Automorphism groups of dense subgroups of R^n 招待

    Dmitri Shakhmatov

    Modern Problems of Geomerty and Topology and their Applications (Tashkent, National University of Uzbekistan, Uzbekistan)  2019年11月 

     詳細を見る

    会議種別:口頭発表(基調)  

    researchmap

  • Selectively sequentially pseudocompact group topolgies on abelian groups 国際会議

    SHAKHMATOV DMITRI

    TOPOSYM 2016: The 12th Topological Symposium, International Conference on General Topology and its Relations to Modern Analysis and Algebra, Prague (Czech Republic)  2016年7月 

     詳細を見る

    記述言語:英語   会議種別:口頭発表(一般)  

    researchmap

  • Selective sequential pseudocompactness in topological spaces and groups 招待 国際会議

    SHAKHMATOV DMITRI

    2016 Interdisciplinary Colloquium in Topology, University of Navarra, Pamplona (Spain)  2016年9月 

     詳細を見る

    記述言語:英語   会議種別:口頭発表(招待・特別)  

    researchmap

  • Productively Baire completeness and compactness 招待 国際会議

    SHAKHMATOV DMITRI

    The 2016 International Conference of the Honam Mathematical Society, Chonbuk National University, Jeonju (Korea)  2016年6月 

     詳細を見る

    記述言語:英語   会議種別:口頭発表(招待・特別)  

    researchmap

  • Compactness-like properties defined by point-open games and maximal almost disjoint families 招待 国際会議

    SHAKHMATOV DMITRI

    RIMS共同研究(公開型)「反復強制法の理論と基数不変量」  2017年11月 

     詳細を見る

    記述言語:英語   会議種別:口頭発表(招待・特別)  

    researchmap

  • Topological groups which are hard to come by 招待 国際会議

    SHAKHMATOV DMITRI

    Pacific International Conference on Topology and Applications (2nd PPICTA), Busan (Korea)  2017年11月 

     詳細を見る

    記述言語:英語   会議種別:口頭発表(招待・特別)  

    researchmap

  • A factorization theorem for weak alpha-favourability 国際会議

    SHAKHMATOV DMITRI

    RIMS共同研究(公開型)「一般位相幾何学の進展と諸問題」  2018年6月 

     詳細を見る

    記述言語:英語   会議種別:口頭発表(一般)  

    researchmap

  • The impact of the Bohr topology on selective pseudocompactness 国際会議

    SHAKHMATOV DMITRI

    2018 International Conference on Topology and its Applications (Nafpaktos, Greece)  2018年7月 

     詳細を見る

    記述言語:英語   会議種別:口頭発表(一般)  

    researchmap

  • Compactness properties defined by open-point games 招待 国際会議

    SHAKHMATOV DMITRI

    Frontiers of selection principles: Celebrating the 60th birthday of Marion Scheepers, Cardinal Stefan Wyszy\'{n}ski University in Warsaw, Warsaw (Poland)  2017年8月 

     詳細を見る

    記述言語:英語   会議種別:口頭発表(招待・特別)  

    researchmap

  • Weak alpha-favourability in topological spaces and groups 招待 国際会議

    SHAKHMATOV DMITRI

    International Conference "Topological Algebra and Set-Theoretic Topology" (Moscow, Russia)  2018年8月 

     詳細を見る

    記述言語:英語   会議種別:口頭発表(招待・特別)  

    researchmap

  • Selectively pseudocompact groups without infinite countably compact subsets

    SHAKHMATOV DMITRI

    General Topology Symposium 2018  2018年12月 

     詳細を見る

    記述言語:英語   会議種別:口頭発表(一般)  

    researchmap

▼全件表示

共同研究・競争的資金等の研究課題

  • 任意のコンパクト空間への連続群作用が不動点をもつ位相群及び群の稠密可能集合の研究

    2020年4月 - 2025年3月

    日本学術振興会  科学研究費助成事業 基盤研究(C)  基盤研究(C)

    D・B Shakhmatov

      詳細を見る

    配分額:4290000円 ( 直接経費:3300000円 、 間接経費:990000円 )

    A subset of a group G is unconditionally closed in G if it is closed in every Hausdorff group topology on G. The family of all unconditionally closed subsets of G forms the family of closed subsets of a unique topology on G called its Markov topology. Similarly, a family of subsets of G which are closed in each precompact group topology on G coincides with the family of closed subsets of the so-called precompact Markov topology of G. We prove that every unconditionally closed subset of a free group is algebraic, thereby answering a problem of Markov for free groups. In modern terminology this means that Markov and Zariski topologies coincide for free groups. Moreover, we show that for non-commutative free groups, Markov topology differs from precompact Markov topology. This is accomplished by finding a sequence S in the free group F with two generators which converges to the identity in each precompact Hausdorff group topology on F (and thus, in the precompact Markov topology on F), yet there exists a Hausdorff group topology on F such that S does not converge to the identity with respect to this topology (and thus, S is not closed in the Markov topology of G). We also deduce from our results that the class of groups for which Markov and Zariski topologies coincide is not closed under taking quotients.

    researchmap

  • コンパクト型可換群の構造及びMarkov稠密性を実現する群位相の導入の研究

    2014年4月 - 2018年3月

    日本学術振興会  科学研究費助成事業 基盤研究(C)  基盤研究(C)

    D・B Shakhmatov

      詳細を見る

    担当区分:研究代表者  資金種別:競争的資金

    配分額:4810000円 ( 直接経費:3700000円 、 間接経費:1110000円 )

    1945年にMarkovによる提起された連結位相群の代数的な構造に関する予想が可換群における成り立つことを証明した。small subgroup generating propertyをもつ可換位相群の代数的な構造を解明した(Comfort-Gouldの問題の完全解決)。整数群の連続体濃度の乗は回帰的位相群でない可算自由閉部分群を含むことを示した。selectively sequentially pseudocompactな空間の概念を導入し、このクラスの性質を研究した。弱疑コンパクト全有界位相群が疑コンパクトであることを示した(Tkachenko の問題の肯定的解決)。

    researchmap

  • 可換群における代数的閉包と群位相での閉包の相互作用及びコンパクト型群位相化の研究

    2010年4月 - 2014年3月

    日本学術振興会  科学研究費助成事業 基盤研究(C)  基盤研究(C)

    D・B Shakhmatov

      詳細を見る

    配分額:3640000円 ( 直接経費:2800000円 、 間接経費:840000円 )

    可換群Gの濃度が実数直線のべき集合の濃度以下であるとき、Gの任意の部分集合Aに対し、AのMarkov-Zariski閉包は位相TにおけるAの閉包と一致し、(G,T)の完備化がコンパクト位相群になるようなG上の群位相Tが存在することを証明した。可換群Gの濃度が実数直線のべき集合の濃度以下であるとき、Gの稠密可能な部分集合の特徴付けを得た。コンパクト群Gのすべての稠密な部分集合のある位相的性質を用いてGが距離付け可能になるための必要十分条件を解明した。位相群がLie群になるための三つの必要十分条件を得た。

    researchmap

  • 特異セレクターによる高次元エルデシー空間の分類

    2010年 - 2012年

    日本学術振興会  科学研究費助成事業 基盤研究(C)  基盤研究(C)

    野倉 嗣紀, シャクマトフ デイミトリ

      詳細を見る

    配分額:3770000円 ( 直接経費:2900000円 、 間接経費:870000円 )

    連続弱選択関数により生成される位相は元の位相空間の位相より弱いことが知られているが、元の空間の位相がその空間で定義されるいくつかの連続弱選択関数により生成されるとき CWS 空間という。本研究では CWS 空間の基本的な性質を確立すると共に、様々な具体的空間で CWS 数を求めた。また、積空間が弱 orderable になるための、必要条件、十分条件をしらべ、その応用として、GO 空間と第一可算空間の積が弱 orderable ならば、GO空間の任意の部分空間は paracompact 性をもつこと、孤立点を持たない擬コンパクト空間 X に関して、X×X×X が順序付け可能であることの必要十分条件は X がカントール集合と同相になることなどを示した。

    researchmap

  • セレクターを許容する高次元エルデシー型空間の構成と超空間の位相構造の研究

    2007年 - 2009年

    日本学術振興会  科学研究費助成事業 基盤研究(C)  基盤研究(C)

    野倉 嗣紀, シャクマトフ デミトリ, 藤田 博司, 服部 泰直

      詳細を見る

    配分額:3510000円 ( 直接経費:2700000円 、 間接経費:810000円 )

    帰納的次元が2になるセレクターを許容するエルデシー型空間の構成に成功した。更に、任意の自然数nに対して、弱セレクターを許容する被覆次元、小帰納的次元共にnであるエルデシー距離空間を構成した。また、特異セレクターにより、空間がtotally disconnected,小帰納的次元が0、大帰納的次元が0の場合を特徴付けることができた。

    researchmap

  • 群上のMarkov-Zariski位相の構造とコンパクト型位相群の収束性質の研究

    2007年 - 2009年

    日本学術振興会  科学研究費助成事業 基盤研究(C)  基盤研究(C)

    SHAKHMATOV Dmitri B., 野倉 嗣紀, 藤田 博司

      詳細を見る

    配分額:4290000円 ( 直接経費:3300000円 、 間接経費:990000円 )

    可換群のMarkov位相とZariski位相が一致することを証明し、可換群のMarkov-Zariski位相の構造を解明した。非可換群のMarkov位相とZariski位相が一致するための必要十分条件を得た。連続体濃度以下の濃度をもつ可換群Gの部分集合があるG上のHausdorff群位相で稠密であるための必要十分条件を得た。また、ねじれない可換群又はdivisible可換群の非可算部分集合についても同様な結果を得た。

    researchmap

  • コンパクト型位相群の代数的構造と収束性に関する研究

    2003年 - 2005年

    日本学術振興会  科学研究費助成事業 基盤研究(C)  基盤研究(C)

    D.B Shakhmatov, 野倉 嗣紀, 木曽 和啓, 佐々木 洋城, 藤田 博司, 山田 耕三

      詳細を見る

    配分額:3600000円 ( 直接経費:3600000円 )

    Xを位相群Gの部分空間とする。Xを含むGの最小部分群はGで稠密であるとき、XはGを位相的に生成するという。位相群Gを位相的に生成するGの閉部分空間Xのうち、最小なweight w(X)をもつXが存在し、そのときの基数w(X)をGの位相的生成weightと呼ぶ。コンパクト可換位相群の位相的生成weightを調べ、次の結果を得た。
    定理1. 0次元のコンパクト可換位相群Gの位相的生成weightはGのweightに一致する。
    定理2.連結コンパクト可換位相群Gの位相的生成weightはGのweightのomega rootである。
    (ここで基数kのomega rootとはsのomega乗がkを越えるような最小のsである。)
    定理3.可換位相群Gの位相的生成weightはGの連結成分c(G)の位相的生成weightとG/c(G)のweightの積である。
    可算コンパクト位相群の代数的構造を研究した。濃度2^c以下の可換群に可算コンパクト群位相を導入できるか否かを調べた。(ここで、cが連続体の濃度を表す。)特に、forcingを用いて以下の定理4が成り立つZermelo-Frankelの集合論公理形のmodel Mを構成した。
    定理4.可換群Gに対して次の条件が同値である。
    (i)Gは可算コンパクト可分群位相をもつ、
    (ii)Gは可算コンパクトhereditarily separable群位相をもつ、
    (iii)Gに無限コンパクト部分集合をもたない可算コンパクトhereditarily separable群位相を導入できる、
    (iv)Gの濃度が2^c以下でGは条件PsとCCをみたす。
    定理5.無限可換群Gに対して次の条件が同値である。
    (i)Gはpseudocompact可分群位相をもつ、
    (ii)Gの濃度がc以上かつ2^c以下でGは条件Psをみたす。

    researchmap

  • セレクターによるフィルター、実数の部分空間の分類と超空間の収束性に関する研究

    2003年 - 2005年

    日本学術振興会  科学研究費助成事業 基盤研究(C)  基盤研究(C)

    野倉 嗣紀, SHAKHMATOV Dmitri, 平出 耕一, 藤田 博司

      詳細を見る

    配分額:3300000円 ( 直接経費:3300000円 )

    本研究の主な目的は(1)フィルター空間でのセレクターの存在、非存在を調べる、(2)超空間の部分空間の位相構造、特にFrechet性、α性を調べること及び(3)セレクターを許容する空間と次元関数との関連を明確にすることであった。目的(1)に関しては次の(a),(b)の結果目的(2)に関しては(c),(d)の結果が得られ更に(e)でセレクターを許容すればその次元は1次元以下かという問題に対する反例を与えた。
    (a)Xの点pを極大にするセレクターが存在すれば点pのcharacterがκであることとXがκ=pをとる順序数空間[0,κ]をコピーとして持つことは同値である。
    このことから例えば、コンパクト位相群XではXがセレクターを許容することとXが零次元距離空間=Cantor set)であることは同値であることが導かれる。
    (b)Fell位相によるセレクターが存在することとtopologically well-orderahilityは同値である。
    (c)homogeneous space Xに対してExp(X)が可算(擬)コンパクトならばXの可算積も可算(擬)コンパクトになることを示しGinsburgの問題の部分解を得た[3]。
    (d)基空間Xがある種のSelection Principleを満たすことと(Vietoris位相とは異なる)超空間Exp(X)のα_2性、α_3性は同値であることを示した。
    (e)scatteredな空間弱セレクターを許容するが次元がn次元であるものが存在する、ここでnは無限を含め任意の自然数の値をとりうる。

    researchmap

  • 位相群における次元及び幾何学的構造の研究

    2002年 - 2003年

    日本学術振興会  科学研究費助成事業 基盤研究(C)  基盤研究(C)

    山田 耕三, SHAKHMATOV Dmitri, 宮田 由雅, 大田 春外, 酒井 政美

      詳細を見る

    配分額:1800000円 ( 直接経費:1800000円 )

    位相空間Xから生成される自由位相群をF(X),自由可換位相群をA(X)で表す.F(X)及びA(X)の要素は,元となる位相空間Xの要素やその逆元をいくつか並べることによって表現されるが,F(X)の要素でn個以下の長さを持つ要素を集めたF(X)の部分空間をF_n(X),A(X)の部分空間をA_n(X)でそれぞれ表すことにする.すると,F_n(X)は,XとX^<-1>と単位元をあわせた空間をn乗した積空間からの自然な写像i_nの連続像で表される.第1可算公理より少し弱い性質であるタイトネスについて1989年,Arhangel'skii, Okunev, Pestovは,「距離空間Xから生成される自由可換位相群A(X)において,A(X)のタイトネスが可算であることの必要十分条件は,Xの孤立点をすべて除いた部分空間が第二可算公理を満たす,つまりウェイトが可算である.」という結果を証明した.そこでこの結果より自然に生まれ,より強い結果を期待した問題「距離空間Xから生成された自由可換位相群A(X)において,A(X)のタイトネスはXの孤立点を除いた部分空間のウェイトと等しくなるか?」を出した.今回,研究分担者であるShakhmatov氏との共同研究で,V=Lという集合論の仮定の下では正しいことを証明した.また,自由位相群F(X)の場合についても,同じ集合論の仮定の下で,距離空間Xから生成された自由位相群F(X)のタイトネスがXのウェイトと等しくなる事を証明した.
    すでに述べたように自由位相群の位相構造はとても複雑であるが,自由位相群の位相構造の研究が始められた1940年代から,各自然数nに対し,自然な写像i_nが商写像になるのはXがどんな空間のときか,という自由位相群のトポロジーに関する重要で非常に難しい問題が出されていた.この問題に関して,Xが距離空間の場合においては,自由位相群,自由可換位相群いずれの場合においても,各i_nが商写像になるためのXの分類をすることができた.

    researchmap

  • 位相群の位相的及び幾何学的構造の研究

    2000年 - 2001年

    日本学術振興会  科学研究費助成事業 基盤研究(C)  基盤研究(C)

    山田 耕三, SHAKHMATOV Dmitri, 宮田 由雅, 大田 春外

      詳細を見る

    配分額:1200000円 ( 直接経費:1200000円 )

    研究目的の一つである、位相空間から生成された自由位相群の位相的構造の研究においていくつかの進展が得られた。位相空間Xから生成される自由位相群の要素は、元となる位相空間の要素やその逆元をいくつか並べることによって表現されるが、自由位相群の要素でn個以下の長さを持つ要素を集めた自由位相群の部分空間をF_n(X)で表すことにする。するとF_n(X)はXとX^<-1>と単位元を会わせた空間をn乗した積空間からの自然な写像i_nの連続像で表される。自由位相群の位相構造は非常に複雑であることはよく知られている。例えば、収束点列とその収束点からなる簡単な構造を持つ空間から生成された自由位相群は、もはや第1可算公理を満たさない、つまり距離空間ではなくなる。一方、部分空間F_n(X)は、Xがコンパクト距離空間のときは、距離空間になることは古くから知られていた。さて、12年度の本研究により、距離空間Xから生成されたF(X)において、各F_n(X)が距離空間になるためのXの必要十分条件を得ることができた。また、13年度の本研究により、「各i_nが商写像になるためのXの必要十分条件を求めよ。」という、これも以前から問題に挙げられてきた問題に関して、距離空間から生成された自由位相群において解決することができた。さらには、この結果を応用することにより、複雑な自由位相群の位相構造が、ある単純な表現をもつことができるための、元となる距離空間の必要十分条件を得ることができた。

    researchmap

  • フィルター上の連続選択関数に関する研究

    2000年 - 2001年

    日本学術振興会  科学研究費助成事業 基盤研究(C)  基盤研究(C)

    野倉 嗣紀, 服部 泰直, 藤田 博司, SHAKHMATOV Dmitri

      詳細を見る

    配分額:2500000円 ( 直接経費:2500000円 )

    本研究により得られた空間のselectorによる特徴づけとしては、まず2^Xがselectorを持てばhereditarily Baire(Hattori-Nogura,1996)であることが知られており、これから(A)可算濃度を持つ正規空間がselectorを持つ必要十分条件はscatteredであることが導かれる。また、(B)selectorを持つ局所コンパクト空間が0次元であるための必要十分条件はselectorの意味で極大な点が稠密に存在することである。
    更に(C)Fell selectorをもつ必要十分条件は基空間がtopological wellorderableであることが示された。コンパクト空間、0次元距離空間に関してはselectorの存在するための必要かつ十分条件が知られているが、それ以外で最初に問題になるのがscattered空間の特別な場合である1点だけnon-isolatedな点を持つ空間である。今κを無限濃度とし、κ上の自由フィルターpに対しκ(p)でκの点はisolated, pの近傍基として{F∪{p},F∈P}を考えた空間を表す。(D)pがnested filter baseを持てばselectorは存在する。
    (E)pがω_1上のco-countableなfilterならばselectorは存在するが、ω_2上のco-countable filterに対しては存在しない。
    (F)p_1がκ_1上のfilterでnestedなfilter baseを持つとする。p_2は可算集合ω上のfilterとする。κ_1(p_1)【symmetry】ω(p_2)がselectorを持てばp_2はFrechet filterである。
    以上の成果は研究論文4編にまとめられ,またtopology國際会議(2001,8月、Nord-fijordeid.ノルウエー)における口頭発表として報告された。

    researchmap

  • 対称空間と可積分系

    2000年 - 2001年

    日本学術振興会  科学研究費助成事業 基盤研究(C)  基盤研究(C)

    木曽 和啓, 森本 徹, 柳 重則, シャクマトフ ディミトリ

      詳細を見る

    配分額:1600000円 ( 直接経費:1600000円 )

    平成12年度、13年度の2年間にわたり当科学研究費を使って、リー環とそれに付随する一般化されたAKNS方程式系とハミルトン構造の構成について研究を進めた。その結果sl(n, C)などを含む重要なリー環やある種の対称空間に対応したリー環について、それらに関係した発展方程式系及びハミルトン構造の構成について重要な知見を得た。一方で、τ-関数や対称空間の幾何学との関係などについてはまだ分からないことが多く、今後も研究を進めたい。特に対称空間上の曲率との関係は今の所はっきりとしない。そうした問題を解明した上で成果を発表することを考えたい。
    なお研究の副産物として得られた次の結果をHokkaido Mathematical Journalに発表した:曲面上で2点A, Bをとり、適当な曲線で結ぶ。さらに1点Pをとり、AとP、BとPを測地線で結ぶ。3角形ABPに意味があるものとして、その面積をSとする。このとき、曲率が定数であれば、Sは点Pの関数として調和である。また点Pにおける角APBも調和であることを示すことが出来る。
    曲率が一定である曲面は、局所的には、球面か曲率負の定曲面だから、それぞれの場合に直接示せばよいわけだが、上記の結果はそうした方法ではなく、一般の場合にも面積のラプラシアンをきちんと計算でき、その結果曲率が一定であれば0になるというものである。

    researchmap

  • 有限群のコホモロジー論の研究

    1999年 - 2001年

    日本学術振興会  科学研究費助成事業 基盤研究(C)  基盤研究(C)

    佐々木 洋城, 平出 耕一, 木曽 和啓, 野倉 嗣紀, 庭崎 隆, ドミトリ シャクマトフ

      詳細を見る

    配分額:3500000円 ( 直接経費:3500000円 )

    平成9〜10年度基盤研究(C)「有限群のコホモロジー論の研究」(課題番号09640046)で行ったSylow p-部分群がrank 2でexponent pのextraspecial p-群である有限群のmod pコホモロジー環の研究に引き続いて,Heldの単純群のmod 7コホモロジー環を決定した.Heldの単純群におけるは基本可換p-部分群の融合の状態は最も一般的な状況である.なお,この研究においてこの種の有限群のmod p-コホモロジー環についての理論は完成した.さらに,前回補助金研究で扱った3次一般線型群のmod pコホモロジー環の研究に引き続き,標数pの素体上の3次特殊線型群のmod pコホモロジー環を決定した.
    次に,パラメーター系に関するCarlsonの定理の精密化を得た.すなわち,有限群Gのp-ランクはrであるとする.Gのmod pコホモロジー環は次の性質をもつパラメーター系{ζ_1,...,ζ_r}をもつ:(1)各i=1,...,rについて,ζ_iはランクiの基本可換p-部分群の中心化群からのtransfer写像の像である;(2)各i=1,...,rについて,{ζ_1,...,ζ_i}のランクiの基本可換p-部分群への制限はその基本可換p-部分群のmod pコホモロジー環のパラメーター系である.この事実から特に,有限群Gのp-ランクが3以下ならば,自明なkG-加群のindex.は0であることが証明された,これは加群のindex関するCarlsonの予想に対する最初の貢献である.
    また,Carlson, Peng, Wheelerによって定義されたtransfer写像を用いて,有限群Gのmod pコホモロジー環の元ρが正則であるためには,ρのCarlson加群L_ρによって定義されるtransfer写像Tr^<L_ρ>:Ext^*_<kG>(L_ρ,L_ρ)→Ext^*_<kG>(k,k)が0写像であることが必要十分であることを証明した.これに関連して,有限群G上の有限生成加群WがGのSylowp-部分群の中心のshifted巡回部分群上射影的ならば,transfer写像Tr^W : Ext^*_<kG>(W,W)→Ext^*_<kG>(k,k)は0写像であることがわかった.

    researchmap

  • アダマール行列の群論的構成法と計算機

    1998年 - 1999年

    日本学術振興会  科学研究費助成事業 基盤研究(C)  基盤研究(C)

    庭崎 隆, 木村 浩, 佐々木 洋城, 木曽 和啓, 野倉 嗣紀, シュクマトフ ディミトリ, 平出 耕一, 宮本 雅彦, 大森 博之, 庭崎 隆

      詳細を見る

    配分額:3300000円 ( 直接経費:3300000円 )

    アダマールの予想とは,「任意の4の倍数mに対して,次数mのアダマール行列が存在する」というものである。現在,まだ存在が知られていないアダマール行列の最小次数は428であり,国内外の研究者が争っている問題である。
    今,Gを位数2nの二面体群とし,A,B,C,Dをその部分集合とする。最近,木村浩氏により,ある条件のもとでこれら四つの部分集合から次数8n+4のアダマール行列を構成する方法が示された。次数428はn=53に対応する。
    本研究では,これら四つの部分集合の群環ZGにおける性質を調べ,小さな奇数nについての実例をコンピュータを用いて構成した。その際,以下のような方法をとった。.
    1.この構成法を位数2nの一般の群の場合に拡張した。
    2.同値な構成法を幾つか与えた。
    3.A,B,C,Dの条件を保つようなG(及びその部分集合)上の作用を研究した。Gのホロモルフもその一つである。
    4.次の特別な場合に注目した。
    (1)A,B,C,Dが対称な場合。
    (2)Gが二面体群のとき,更に強く"y-不変な場合。
    これらの場合,A,B,C,Dに関する条件は群環ZGにおける四平方和の問題となった。
    5.コンピュータを用いて,15を除く30以下のすべての奇数nについて,二面体群からアダマール行列を構成した。
    これらのことは,本研究における方法で多くのアダマール行列が構成できる可能性があることを示している。また,実例の殆どがy-不変なものから発見できたことも興味ある事実である。

    researchmap

▼全件表示

メディア報道