Updated on 2025/03/27

写真a

 
Nishihara Yu
 
Organization
Premier Institute for Advanced Studies (PIAS) Geodynamics Research Center (GRC) Professor
Title
Professor
Contact information
メールアドレス
External link

Degree

  • Doctor of Science ( Tokyo Institute of Technology )

Research Interests

  • 地震学

  • Mineral Physics

  • Seismology

  • Physics of the Earth interior

  • 地球内部物理学

  • 鉱物物理学

Research Areas

  • Natural Science / Solid earth sciences

Education

  • 東京工業大学大学院   理学系研究科   地球惑星科学専攻

    1998.4 - 2003.3

      More details

    Country: Japan

    researchmap

  • Tokyo Institute of Technology   School of Science   Department of Earth and Planetary Sciences

    1994.4 - 1998.3

      More details

    Country: Japan

    researchmap

Research History

  • Ehime University   Geodynamics Research Center   Professor

    2020.10

      More details

  • Ehime University   Geodynamics Research Center

    2013.4 - 2020.9

      More details

  • Ehime University   Senior Research Fellow Center

    2008.11 - 2013.3

      More details

  • 東京工業大学大学院 地球惑星科学専攻 21世紀COE助手・助教

    2004.11 - 2008.10

      More details

  • The University of Tokyo   The Institute for Solid State Physics

    2004.4 - 2004.10

      More details

▼display all

Professional Memberships

Committee Memberships

  •   高圧力の科学と技術, 副編集委員長  

    2022   

      More details

  • Japan Association of Mineralogical Sciences   JpGU program  

    2019.9   

      More details

    Committee type:Academic society

    researchmap

  • 日本高圧力学会   会計幹事  

    2013 - 2015   

      More details

    Committee type:Academic society

    researchmap

  • 高圧力の科学と技術   編集委員  

    2012 - 2015   

      More details

    Committee type:Academic society

    researchmap

  • SPring-8ユーザ共同体(SPRUC)   地球惑星科学研究会代表  

    2012 - 2013   

      More details

    Committee type:Academic society

    researchmap

Papers

  • Limited stability of hydrous SiO<sub>2</sub> stishovite in the deep mantle Reviewed

    Goru Takaichi, Yu Nishihara, Kyoko N. Matsukage, Masayuki Nishi, Yuji Higo, Yoshinori Tange, Noriyoshi Tsujino, Sho Kakizawa

    Earth and Planetary Science Letters   640   118790   2024.8

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    The stability of minerals that can hold water is important for understanding the distribution and transportation of water in the Earth's deep interior. Water distribution in the lower mantle depends on the stability of water-bearing minerals in the subducting slab because minerals in the surrounding lower mantle have low water solubility. Recent studies have reported that pure SiO2 high-pressure phases can hold large amounts of water (>3 wt%) however, their experimental results are contradictory regarding stability. In this study, the stability of hydrous SiO2 stishovite in a water-saturated system was investigated at pressures of 10–30 GPa and temperatures reaching 1300 °C by in situ X-ray observation using a multi-anvil apparatus. The experiments revealed that the unit-cell volume of stishovite was significantly greater than that of anhydrous stishovite (by 3.8 % at the maximum) below 700 °C in the studied range of pressure, suggesting a high water content in stishovite (up to 5.4 wt% H2O). However, the excess volume decreased rapidly at higher temperatures and the volume was approximately identical to anhydrous stishovite above 800 °C. Time-resolved measurements at constant temperatures of 450 and 500 °C, where water-induced excessive volume was observed, showed that the unit-cell volume shrank with time. This indicates that the dissolution of water in stishovite is a metastable phenomenon. These results indicate that SiO2 stishovite in crustal materials subducting into the lower mantle is unlikely to retain >1 wt% of water as a stable phase.

    DOI: 10.1016/j.epsl.2024.118790

    Scopus

    researchmap

  • Characterization of the lattice preferred orientation of hcp iron transformed from the single-crystal bcc phase in situ at high pressures up to 80 GPa

    Yohan Park, Tatsuya Wakamatsu, Shintaro Azuma, Yu Nishihara, Kenji Ohta

    Physics and Chemistry of Minerals   51 ( 3 )   2024.8

     More details

    Publishing type:Research paper (scientific journal)   Publisher:Springer Science and Business Media LLC  

    Abstract

    Studying the anisotropic physical properties of hexagonal closed-packed (hcp) iron is essential for understanding the properties of the Earth’s inner core related to the preferred orientation of the inner core materials suggested by seismic observations. Investigating the anisotropic physical properties of hcp iron requires (1) the synthesis of hcp iron samples that exhibit several distinctive types of strong lattice preferred orientation (LPO) and (2) the quantitative LPO analysis of the samples. Here, we report the distinctive LPO of hcp iron produced from single-crystal body-centered cubic (bcc) iron compressed along three different crystallographic orientations ([100], [110], and [111]) in a diamond anvil cell based on synchrotron multiangle X-ray diffraction measurements up to 80 GPa and 300 K. The orientation relationships between hcp iron and bcc iron are consistent with the Burgers orientation relationship with variant selection. We show that the present method is a way to synthesize hcp iron with strong and characteristic LPO, which is beneficial for experimentally evaluating the anisotropic physical properties of hcp iron.

    DOI: 10.1007/s00269-024-01293-6

    researchmap

    Other Link: https://link.springer.com/article/10.1007/s00269-024-01293-6/fulltext.html

  • Phase Relation and Equation of State of Iron‐Titanium Oxyhydroxides With α‐PbO<sub>2</sub> Type Crystal Structure at Deep Mantle Conditions

    Kyoko N. Matsukage, Yu Nishihara, Yoshinori Tange, Yuji Higo

    Journal of Geophysical Research: Solid Earth   129 ( 3 )   2024.3

     More details

    Publishing type:Research paper (scientific journal)   Publisher:American Geophysical Union (AGU)  

    Abstract

    Phase relation and equation of state of iron‐titanium oxyhydroxide with α‐PbO<sub>2</sub>‐type crystal structure (hydrous α‐phase) was investigated at pressure from middle upper mantle to mantle transition zone. The experiments were performed using multi‐anvil apparatus with in situ synchrotron X‐ray diffraction. The metal‐diamond sample container was used to maintain a closed system with respect to water while allowing X‐ray transmittance. Starting materials were mixture of reagent grade goethite and anatase with Fe:Ti = 1:1 and 1:3. The hydrous α‐phase was synthesized at 11–14 GPa and 800–900°C. The X‐ray diffraction data were obtained over a wide range of pressures from 5 to 22 GPa and temperatures from room temperature to 930°C. Using pressure‐volume‐temperature data of the hydrous α‐phase with Fe:Ti = 1:1 collected at room temperature to 800°C and at 8.9–20.8 GPa, we determined the isothermal bulk modulus (K<sub>T0</sub> = 183 (1) GPa) and the thermal expansivity (α<sub>0</sub> = 3.29 (1) × 10<sup>−5</sup>K<sup>−1</sup>) at ambient condition. The stability field of the hydrous α‐phase and phase relation of FeOOH‐TiO<sub>2</sub> system at 900°C was well constrained. It was found that the hydrous α‐phase decomposes into baddeleyite‐type TiO<sub>2</sub> + ε‐FeOOH at pressure of approximately 20–21 GPa, and into ilmenite + rutile at 5–6 GPa. This stability field equivalent to depth of 180–600 km in the subduction zone. Our results suggest that the hydrous α‐phase is an important water reservoir in the middle upper mantle to mantle transition zone.

    DOI: 10.1029/2023jb027906

    researchmap

  • Rheology of hexagonal close‐packed(hcp) iron Reviewed

    Yu Nishihara, Shunta Doi, Noriyoshi Tsujino, Daisuke Yamazaki, Kyoko N. Matsukage, Yumiko Tsubokawa, Takashi Yoshino, Andrew R. Thomson, Yuji Higo, Yoshinori Tange

    Journal of Geophysical Research: Solid Earth   2023.5

     More details

    Authorship:Lead author, Corresponding author   Publishing type:Research paper (scientific journal)   Publisher:American Geophysical Union (AGU)  

    DOI: 10.1029/2022jb026165

    researchmap

  • Preliminary results from the new deformation multi-anvil press at the Photon Factory: insight into the creep strength of calcium silicate perovskite Reviewed

    Andrew R. Thomson, Yu Nishihara, Daisuke Yamazaki, Noriyoshi Tsujino, Simon A. Hunt, Yumiko Tsubokawa, Kyoko N. Matsukage, Tomoaki Kubo, David P. Dobson

    Core-Mantle Coevolution: A Multidisciplinary Approach, American Geophysical Union   59 - 73   2023.5

     More details

    Language:English  

    researchmap

▼display all

MISC

  • Current status and future plan of deformation and fracture experiments at SPring-8/BL04B1

    肥後祐司, 大内智博, 西原遊, 辻野典秀

    月刊地球   44 ( 1 )   2022

  • Rheology of hexagonal close-packed iron studied by high-pressure deformation experiments using D111-type apparatus

    西原遊, 土居峻太, 辻野典秀, 山崎大輔

    量子ビームサイエンスフェスタ(Web)   2019   2020

  • High-Pressure and- Temperature Deformation Experiments using D111-type apparatus: Towards Understanding of Rheology of Deep Earth Materials

    西原遊, 辻野典秀, 久保友明, 山崎大輔, 土居峻太, 今村公裕, 芳野極

    Photon Factory News   38 ( 3 )   2020

  • Rheology of hexagonal-close packed (hcp) iron

    西原遊, 土居峻太, 辻野典秀, 山崎大輔

    KEK Progress Report (Web)   ( 2020-6 )   2020

  • 六方最密構造(hcp)鉄のレオロジー

    西原遊, 土居峻太, 辻野典秀, 山崎大輔, 肥後祐司

    日本地球惑星科学連合大会予稿集(Web)   2019   2019

▼display all

Awards

  • 奨励賞

    2010   日本高圧力学会   マントル深部の流動特性と弾性の実験的研究

    西原 遊

     More details

Research Projects

  • 高圧含水鉱物の変形実験で探る下部マントル上部の地震波異方性

    2024.4 - 2029.3

    日本学術振興会  科学研究費助成事業  基盤研究(B)

    西原 遊, 大内 智博, 井上 紗綾子

      More details

    Grant amount:\18590000 ( Direct Cost: \14300000 、 Indirect Cost:\4290000 )

    researchmap

  • 高時間分解能の放射光その場観察変形実験で探る深部断層形成と地震発生のメカニズム

    2023.4 - 2028.3

    日本学術振興会  科学研究費助成事業  基盤研究(A)

    大内 智博, 北 佐枝子, 西原 遊, 雷 興林, 川方 裕則, 川添 貴章, 井上 紗綾子

      More details

    Grant amount:\46800000 ( Direct Cost: \36000000 、 Indirect Cost:\10800000 )

    researchmap

  • Rheology in the Earth's inner core studied by high-pressure deformation experiments

    2019.4 - 2024.3

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research Grant-in-Aid for Scientific Research (A)  Grant-in-Aid for Scientific Research (A)

      More details

    Grant amount:\42250000 ( Direct Cost: \32500000 、 Indirect Cost:\9750000 )

    researchmap

  • 稍深発地震とスロースリップに対する超臨界水の効果:放射光その場観察実験による検証

    2019.4 - 2023.3

    日本学術振興会  科学研究費助成事業 基盤研究(A)  基盤研究(A)

    大内 智博, 西原 遊, 雷 興林, 河野 義生

      More details

    Grant amount:\44330000 ( Direct Cost: \34100000 、 Indirect Cost:\10230000 )

    本研究では、深さ30-300 kmの沈み込むプレート(スラブ)内部にて発生するスラブ内地震や、その直上にて発生するスロースリップ現象が、超臨界水によって誘発されるのか(あるいは抑制されるのか)どうかを実験的に明らかにすることを目的としている。そこで本年度では、まずスラブ内浅部の温度圧力条件下(1-3 GPa, 500-1000℃)における含水ハルツバーガイト(カンラン石+斜方輝石多結晶体)の変形実験をSPring-8にて行った。その結果、ハルツバーガイト試料中に水性流体が存在する場合には、微小破壊音(AE)をほとんど伴わずに断層形成に至ることが明らかとなった。なお、高圧下にて試料を取り囲む圧力媒体からは水性流体の有無に関わらずAEの発生が確認された。一方、試料中に水性流体が存在しない場合では、断層形成とすべりの一連の過程においてAEが発生することが確認された。以上の結果より、系に水性流体が存在するではAEの発生を伴わない断層すべり(サイレント地震)が起きると結論できる。微細組織観察の結果、断層沿いのガウジに含水鉱物(タルク)が形成されていることが確認されていることから、間隙水圧による断層アスペリティ―の低下や含水鉱物による断層の潤滑化が、サイレント地震の原因であると解釈される。この結果は、国際誌(Contrib. Mineral. Petrol)にて現在リバイス中である。
    また本年度末には、「高速岩石強度・歪測定システム」の中核をなすCdTe型2次元半導体検出器をSPring-8に導入した。この検出器を用い、高温高圧下(1-2 GPa, 600℃)にて変形するカンラン石の2次元X線回折パターンを露光時間30秒(従来検出器を用いた場合の1/10の露光時間)の撮影条件にて連続撮影することに成功した。

    researchmap

  • Development of innovative high-pressure deformation technology toward understanding complicated seismic structure and dynamics of Earth's inner core

    2019.4 - 2023.3

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research Grant-in-Aid for Scientific Research (A)  Grant-in-Aid for Scientific Research (A)

      More details

    Grant amount:\46670000 ( Direct Cost: \35900000 、 Indirect Cost:\10770000 )

    researchmap

▼display all

Teaching Experience (On-campus)

▼display all