Updated on 2025/04/01

写真a

 
Nakajima Hiroki
 
Organization
Graduate School of Science and Engineering (Science) Major of Science and Engineering Mathematics and Computer Science Assistant Professor
Title
Assistant Professor
Contact information
メールアドレス
External link

Degree

  • Ph. D (Science) ( 2019.9   Tohoku University )

Research Interests

  • Concentration of measure phenomenon

  • Metric measure space

  • Isoperimetric inequality

Research Areas

  • Natural Science / Geometry  / Metric measure geometry

Education

  • Tohoku University   Graduate School of Science   Department of Mathematics

    2017.4 - 2019.9

      More details

    Country: Japan

    researchmap

  • Tohoku University   Graduate School of Science   Department of Mathematics

    2015.4 - 2017.3

      More details

    Country: Japan

    researchmap

  • Tohoku University   Faculty of Science   Department of Mathematics

    2011.4 - 2015.3

      More details

    Country: Japan

    researchmap

Research History

  • Ehime University   Graduate School of Science and Engineering Mathematics, Physics, and Earth Sciences   Assistant Professor

    2023.3

      More details

    Country:Japan

    researchmap

  • Tohoku University   Institute for Excellence in Higher Education   Assistant Professor

    2020.5 - 2023.3

      More details

    Country:Japan

    researchmap

  • Tohoku University   Graduate School of Science Department of Mathematics   JSPS Research Fellow PD

    2019.10 - 2020.4

      More details

    Country:Japan

    researchmap

  • Tohoku University   Graduate School of Science Department of Mathematics   JSPS Research Fellow DC2

    2019.4 - 2019.9

      More details

    Country:Japan

    researchmap

Professional Memberships

  • Mathematical Society of Japan

    2018.3

      More details

Papers

  • Convergence of group actions in metric measure geometry Reviewed

    Hiroki Nakajima, Takashi Shioya

    Communications in Analysis and Geometry   2024.11

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    We generalize the box and observable distances to those between metric
    measure spaces with group actions, and prove some fundamental properties. As an
    application, we obtain an example of a sequence of lens spaces with unbounded
    dimension converging to the cone of the infinite-dimensional complex projective
    space. Our idea is to use the theory of mass-transport.

    arXiv

    researchmap

    Other Link: http://arxiv.org/pdf/2104.00187v2

  • Principal bundle structure of the space of metric measure spaces Reviewed

    Daisuke Kazukawa, Hiroki Nakajima, Takashi Shioya

    Proceedings of the Royal Society of Edinburgh: Section A Mathematics   1 - 31   2024.11

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:Cambridge University Press (CUP)  

    We study the topological structure of the space $\mathcal{X}$ of isomorphism classes of metric measure spaces equipped with the box or concentration topologies. We consider the scale-change action of the multiplicative group ${\mathbb{R } }_+$ of positive real numbers on $\mathcal{X}$ , which has a one-point metric measure space, say $*$ , as only one fixed-point. We prove that the ${\mathbb{R } }_+$ -action on $\mathcal{X}_* := \mathcal{X} \setminus \{*\}$ admits the structure of non-trivial and locally trivial principal ${\mathbb{R } }_+$ -bundle over the quotient space. Our bundle ${\mathbb{R } }_+ \to \mathcal{X}_* \to \mathcal{X}_*/{\mathbb{R } }_+$ is a curious example of a non-trivial principal fibre bundle with contractible fibre. A similar statement is obtained for the pyramidal compactification of $\mathcal{X}$ , where we completely determine the structure of the fixed-point set of the ${\mathbb{R } }_+$ -action on the compactification.

    DOI: 10.1017/prm.2024.111

    researchmap

  • Topological aspects of the space of metric measure spaces Reviewed

    Daisuke Kazukawa, Hiroki Nakajima, Takashi Shioya

    Geometriae Dedicata   218 ( 3 )   2024.4

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:Springer Science and Business Media LLC  

    DOI: 10.1007/s10711-024-00921-3

    researchmap

    Other Link: https://link.springer.com/article/10.1007/s10711-024-00921-3/fulltext.html

  • A natural compactification of the Gromov–Hausdorff space Reviewed

    Hiroki Nakajima, Takashi Shioya

    Geometriae Dedicata   218 ( 1 )   2023.11

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:Springer Science and Business Media LLC  

    DOI: 10.1007/s10711-023-00852-5

    arXiv

    researchmap

    Other Link: https://link.springer.com/article/10.1007/s10711-023-00852-5/fulltext.html

  • Isoperimetric Inequality on a Metric Measure Space and Lipschitz Order with an Additive Error Reviewed

    Hiroki Nakajima

    The Journal of Geometric Analysis   32 ( 1 )   2021.12

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:Springer Science and Business Media LLC  

    DOI: 10.1007/s12220-021-00773-3

    arXiv

    researchmap

    Other Link: https://link.springer.com/article/10.1007/s12220-021-00773-3/fulltext.html

  • Isoperimetric rigidity and distributions of 1-Lipschitz functions Reviewed

    Hiroki Nakajima, Takashi Shioya

    Advances in Mathematics   349   1198 - 1233   2019.5

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:Elsevier BV  

    We prove that if a geodesic metric measure space satisfies a comparison condition for isoperimetric profile and if the observable variance is maximal, then the space is foliated by minimal geodesics, where the observable variance is defined to be the supremum of the variance of 1-Lipschitz functions on the space. Our result can be considered as a variant of Cheeger-Gromoll's splitting theorem and also of Cheng's maximal diameter theorem. As an application, we obtain a new isometric splitting theorem for a complete weighted Riemannian manifold with a positive Bakry-Émery Ricci curvature.

    DOI: 10.1016/j.aim.2019.04.043

    Scopus

    arXiv

    researchmap

  • The maximum of the 1-measurement of a metric measure space Reviewed

    Hiroki NAKAJIMA

    Journal of the Mathematical Society of Japan   71 ( 2 )   2019.4

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:Mathematical Society of Japan (Project Euclid)  

    DOI: 10.2969/jmsj/78177817

    arXiv

    researchmap

▼display all

Presentations

  • Topological dimension of the Gromov-Hausdorff spaces

    Hiroki Nakajima

    iCollab International Joint Meeting of Young Researchers for Future Research Collaboration  2025.3 

     More details

    Event date: 2025.3

    Language:English   Presentation type:Oral presentation (general)  

    researchmap

  • 測度距離空間全体の空間の測地線

    中島啓貴

    曲率に関する研究会  2024.6 

     More details

    Event date: 2024.6

    Language:Japanese   Presentation type:Oral presentation (general)  

    researchmap

  • 測度距離空間全体の空間の位相的性質

    中島啓貴

    広島大学 トポロジー・幾何セミナー  2024.1 

     More details

    Event date: 2024.1

    Language:Japanese   Presentation type:Oral presentation (general)  

    researchmap

  • 測度距離空間全体の空間の位相的性質

    中島啓貴

    一般トポロジーとその関連分野の進捗  2023.6 

     More details

    Event date: 2023.6

    researchmap

  • Lipschitz Order with an Additive Error and Normal Law à la Lévy on the Hamming Cubes

    Geometry and Probability  2018.1 

     More details

  • Isoperimetric rigidity and distributions of 1-Lipschitz functions

    2017.12 

     More details

  • Isoperimetric rigidity and distributions of 1-Lipschitz functions

    2017.11 

     More details

  • A natural compactification of the Gromov–Hausdorff space

    2022.3 

     More details

    Language:Japanese   Presentation type:Oral presentation (general)  

    researchmap

  • 測度距離空間の幾何における群の作用の収束

    幾何シンポジウム  2021.9 

     More details

  • Box distance and observable distance via optimal transport

    2020.1 

     More details

  • Lipschitz Order with an Additive Error and Normal Law à la Lévy on the Hamming Cubes

    2018.2 

     More details

  • 測度距離空間上の等周不等式と誤差付きリプシッツ順序

    大阪大学幾何セミナー  2018.8 

     More details

  • 測度距離空間上の等周不等式と誤差付きリプシッツ順序

    幾何シンポジウム  2018.8 

     More details

  • Lipschitz Order with an Additive Error and Normal Law à la Lévy on the Hamming Cubes

    HeKKSaGOn German-Japanese University Network  2018.4 

     More details

  • Isoperimetric rigidity and distributions of 1-Lipschitz functions

    Hiroki Nakajima, Takashi Shioya

    2018.3 

     More details

  • Box distance and observable distance via optimal transport

    2019.9 

     More details

  • Isoperimetric inequality on a metric measure space and Lipschitz order with an additive error

    Geometry and Probability  2019.1 

     More details

  • 測度距離空間上の等周不等式と誤差付きリプシッツ順序

    東北大学幾何セミナー  2018.10 

     More details

  • 測度距離空間上の等周不等式と誤差付きリプシッツ順序

    幾何学阿蘇研究集会  2018.9 

     More details

  • Lipschitz Order with an Additive Error and Normal Law à la Lévy on the Hamming Cubes

    2018.3 

     More details

  • Lipschitz Order with an Additive Error and Normal Law à la Lévy on the Hamming Cubes

    2018.2 

     More details

  • Lipschitz Order with an Additive Error and Normal Law à la Lévy on the Hamming Cubes

    2018.2 

     More details

  • 等周不等式と測度距離空間の収束理論

    中島啓貴

    愛媛大学数学談話会  2023.3 

     More details

▼display all

Awards

  • Kawai prize for doctoral thesis

    2020.3   Kawai foundation for Mathematical Sciences  

     More details

  • Aoba Science Shinko-kai incentive award

    2014.3   Tohoku University  

     More details

Research Projects

  • 測度距離空間の幾何における収束理論

    2022.4 - 2027.3

    日本学術振興会  科学研究費助成事業 若手研究  若手研究

    中島 啓貴

      More details

    Grant amount:\4420000 ( Direct Cost: \3400000 、 Indirect Cost:\1020000 )

    researchmap

  • 測度距離空間の間の誤差付き順序による等周不等式の研究

    2019.4 - 2021.3

    日本学術振興会  科学研究費助成事業 特別研究員奨励費  特別研究員奨励費

    中島 啓貴

      More details

    Grant amount:\1700000 ( Direct Cost: \1700000 )

    M. Gromovは,測度距離空間全体の集合にリプシッツ順序と呼ばれる順序関係を定め,豊かな理論を展開した.その理論の一つとして,リプシッツ順序を用いた等周不等式の定式化が挙げられる.私は,リプシッツ順序を加法的誤差を許すように拡張し,離散空間と連続的な空間の等周不等式を統一的に扱う方法を得た.誤差付きリプシッツ順序を用いて定式化しておくことにより,等周不等式は測度距離空間の極限操作に関して保存される.この理論は今までとは性質のことなる空間での等周問題の解を求めることにつながる点で重要であり,本研究の基礎となるものである.本年度はこの理論について論文にまとめ,学術雑誌への投稿を行った.
    一方,二つの測度距離空間の間の距離であるbox distance やobservable distanceについての研究成果も得られた.Box distanceは測度距離空間の理論における基本的な距離であり,測度を考慮したバージョンのGromov-Hausdorff距離のようなものである.一方,observable distanceは測度の集中現象に由来する興味深い距離である.しかし,これら二つの距離はパラメータと呼ばれる写像を用いて定義されており,直感的な理解が難しい.パラメータは必ず存在するが,具体的に構成することが困難である.私は,これらの距離の輸送計画を用いた表示を得た.この表示により,これら二つの距離のより直感的理解が可能となった.輸送計画は具体的な構成あるいは直感的構成が可能である.さらに,その輸送計画に関して最適輸送が存在することも示した.これらの結果については現在論文を執筆中である.

    researchmap