Updated on 2025/03/27

写真a

 
Yanagi Shigenori
 
Organization
Graduate School of Science and Engineering (Science) Major of Science and Engineering Mathematics and Computer Science Associate Professor
Title
Associate Professor
Contact information
メールアドレス
External link

Degree

  • Doctor(Science) ( Waseda University )

Research Interests

  • Partial Differential Equations

  • 偏微分方程式

Research Areas

  • Natural Science / Mathematical analysis  / 関数方程式

Education

  • Waseda University

    1990.4 - 1992.9

      More details

    Country: Japan

    researchmap

  • Waseda University   Graduate School, Division of Science and Engineering   Department of Mathematics

    - 1992

      More details

  • Waseda University

    1988.4 - 1990.3

      More details

    Country: Japan

    researchmap

  • Waseda University   Graduate School, Division of Science and Engineering   Department of Mathematics

    - 1990

      More details

  • Waseda University   School of Science and Engineering

    1984.4 - 1988.3

      More details

    Country: Japan

    researchmap

  • Waseda University   Faculty of Science and Engineering

    - 1988

      More details

▼display all

Research History

  • - Ehime University Graduate School of Science and Engineering Mathematics,Physics, and Earth Sciences

    2007

      More details

  • Ehime University   Mathematics, Physics, and Earth Sciences, Graduate School of Science and Engineering   Associate Professor

    2006.4

      More details

  • Ehime University Graduate School of Science and Engineering Mathematics,Physics, and Earth Sciences

    2006 - 2007

      More details

  • Ehime University   Faculty of Science, Department of Mathematics

    2005.4 - 2006.3

      More details

  • Ehime University   Faculty of Science

    1998.4 - 2005.3

      More details

  • Ehime University Faculty of Sciece Department of Mathematical Sciences

    1998 - 2006

      More details

  • Ehime University   Faculty of Science   Senior Assistant Professor

    1996.4 - 1998.3

      More details

  • Ehime University Faculty of Science Department of Mathematics

    1996 - 1998

      More details

  • Ehime University   Faculty of Science, Department of Mathematics   Research Associate

    1992.10 - 1996.3

      More details

  • Ehime University Faculty of Science Department of Mathematics

    1992 - 1996

      More details

▼display all

Professional Memberships

Papers

  • Asymptotic behavior of the solutions for one-dimensional equations of a viscous reactive gas

    Shigenori Yanagi

    JAPAN JOURNAL OF INDUSTRIAL AND APPLIED MATHEMATICS   25 ( 1 )   99 - 116   2008.2

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:KINOKUNIYA CO LTD  

    We consider the asymptotic behavior of the complete system of equations governing a heat-conductive, reactive, compressible viscous gas bounded by two infinite parallel plates. The motion is proved to tend towards the corresponding constant state, as time tends to infinity. Moreover, the decay rate is investigated.

    Web of Science

    researchmap

  • Large-time behavior of spherically symmetric solutions to an isentropic model of compressible viscous fluid in a field of potential forces

    T Nakamura, S Nishibata, S Yanagi

    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES   14 ( 12 )   1849 - 1879   2004.12

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:WORLD SCIENTIFIC PUBL CO PTE LTD  

    We study the large-time behavior of a spherically symmetric motion of isentropic and compressible viscous gas in a field of potential force over an unbounded exterior domain in R-n (n > 2). First, we show the unique existence of a stationary solution satisfying an adhesion boundary condition and a positive spatial asymptotic condition. Then, it is shown that the stationary solution becomes a time asymptotic state to the initial boundary value problem with the same boundary and spatial asymptotic conditions. Here, the initial data can be chosen arbitrarily large if it belongs to the suitable Sobolev space. Moreover, if the external force is attractive to the center of a sphere, it can also be taken arbitrarily large. The proof of the stability theorem is based on computations, executed by using the Lagrangian coordinate. In the proof, it is the essential step to obtain the pointwise estimate for the density. It is derived through employing a representation formula of the density with the aid of the standard energy method. The Holder regularity of the initial data is also required for translating the results in the Lagrangian coordinate to those in the Eulerian coordinate.

    DOI: 10.1142/S0218202504003842

    Web of Science

    researchmap

  • Existence of periodic solutions for a one-dimensional isentropic model system of compressible viscous gas

    S Yanagi

    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS   46 ( 2 )   279 - 298   2001.10

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:PERGAMON-ELSEVIER SCIENCE LTD  

    DOI: 10.1016/S0362-546X(00)00121-8

    Web of Science

    researchmap

  • Asymptotic stability of the spherically symmetric solutions for a viscous polytropic gas in a field of external forces

    S Yanagi

    TRANSPORT THEORY AND STATISTICAL PHYSICS   29 ( 3-5 )   333 - 353   2000

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:TAYLOR & FRANCIS INC  

    We study the asymptotic behavior of the spherically symmetric solutions for a viscous polytropic gas in a bounded annulus domain. For any initial data, and suitably small external force generated by some scalar steady potential, the solution is proved to exponentially tend towards the corresponding stationary solution as time tends to infinity.

    Web of Science

    researchmap

  • Asymptotic stability of the solutions to a full one-dimensional system of heat-conductive, reactive, compressible viscous gas

    Shigenori Yanagi

    Japan Journal of Industrial and Applied Mathematics   15 ( 3 )   423 - 442   1998

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:Kinokuniya Co. Ltd  

    We consider the asymptotic behavior of the complete system of equations governing a heat-conductive, reactive, compressible viscous gas in a bounded interval. The motion is proved to exponentially tend towards the corresponding constant state, as time tends to infinity.

    DOI: 10.1007/BF03167320

    Scopus

    researchmap

  • Asymptotic stability of the spherically symmetric solutions for an isentropic model of compressible viscous gas

    Shigenori Yanagi

    Japan Journal of Industrial and Applied Mathematics   14 ( 2 )   215 - 243   1997

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:Kinokuniya Co. Ltd  

    We study the asymptotic behavior of the spherically symmetric solutions for an isentropic model of compressible viscous gas in a bounded annulus domain. For any external force generated by some scalar steady potential, and for any initial data, the solution is proved to exponentially tend towards the corresponding stationary solution as time tends to infinity, provided that the adiabatic constant is suitably close to 1.

    DOI: 10.1007/BF03167265

    Scopus

    researchmap

  • Uniform boundedness of the solutions for a one-dimensional isentropic model system of compressible viscous gas

    A Matsumura, S Yanagi

    COMMUNICATIONS IN MATHEMATICAL PHYSICS   175 ( 2 )   259 - 274   1996.1

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:SPRINGER VERLAG  

    This paper studies an initial boundary value problem for a one-dimensional isentropic model system of compressible viscous gas with large external forces, represented by upsilon(t) - u(x) = 0 u(t) + (a upsilon(-gamma))(x) = mu(u(x)/upsilon)(x) + f(integral(0)(x) upsilon dx,t), with (upsilon(x,0), U(X, 0)) = (upsilon(0)(X), u(0)(X)), u(0, t) = U(1, t) = 0. Especially, the uniform boundedness of the solution in time is investigated. It is proved that for arbitrary large initial data and external forces, the problem uniquely has an uniformly bounded, global-in-time solution with also uniformly positive mass density, provided the adiabatic constant gamma( > 1) is suitably close to 1. The proof is based on L(2)-energy estimates and a technique used in [9].

    DOI: 10.1007/BF02102408

    Web of Science

    researchmap

  • Existence of Uniform Bounded Solution to the Piston Problem for One-Dimensional Equations of Compressible Viscous Gas

    Advances in Mathematical Sciences and Applications   6 ( 2 )   509 - 521   1996

     More details

  • Asymptotic Behavior of the Solutions to a One-Dimensional Motion of Compressible Viscous Fluids

    Mathematica Bohemica   120 ( 4 )   431 - 443   1995

     More details

  • GLOBAL EXISTENCE FOR ONE-DIMENSIONAL MOTION OF NONISENTROPIC VISCOUS FLUIDS

    S YANAGI

    MATHEMATICAL METHODS IN THE APPLIED SCIENCES   16 ( 9 )   609 - 624   1993.9

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:JOHN WILEY & SONS LTD  

    We study the p-system with viscosity given by v(t) - u(x) = 0, u(t) + p(v)x = (k(v)u(x))x + f(integral-x/0 vdx, t), with the initial and the boundary conditions (v(x, 0), u(x, 0)) = (v0(x), u0(x)), u(0, t) = u(X, t) = 0. To describe the motion of the fluid more realistically, many equations of state, namely the function p(v) have been proposed. In this paper, we adopt Planck's equation, which is defined only for v > b(> 0) and not a monotonic function of v, and prove the global existence of the smooth solution. The essential point of the proof is to obtain the bound of v of the form b < h(T) less-than-or-equal-to v(x, t) less-than-or-equal-to H(T) < infinity for some constants h(T) and H(T).

    Web of Science

    researchmap

  • The Riemann problem for a class of conservation laws of van der waals fluid

    Shigenori Yanagi

    Japan Journal of Industrial and Applied Mathematics   9 ( 2 )   239 - 268   1992.6

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    We are concerned with the Riemann problem of p-system, i.e., vt-ux=0, ut+p(v)x=0. We know that if p is a monotone function, the solution can be constructed by shock waves and rarefaction waves. Therefore we consider the function p which is not monotone. In this case, this system is a mixed type, and very little is known about this type of the system. Furthermore, we know that we can not construct the solution only by the above waves because of the ellipticity of the system. In order to overcome this difficulty, we consider the phase boundary, which is a shock wave with shock speed 0 and changes phases. Using this and the above waves, we describe the solution explicitly, for arbitrary initial step data. © 1992 JJIAM Publishing Committee.

    DOI: 10.1007/BF03167567

    Scopus

    researchmap

▼display all

Books

MISC

Presentations

  • 燃焼モデル方程式に対する解の時間大域的挙動について

    柳 重則

    日本数学会中国・四国支部例会  2007.1 

     More details

  • 外力項を持つ圧縮性 Navier-Stokes 方程式の球対称解の漸近挙動について

    柳 重則

    日本数学会  2003.9 

     More details

  • Asymptotic Stability of the Solutions for a Combustion Model of Compressible Viscous Gas

    柳 重則

    Workshop on Mathematical Analysis on Nonlinear Phenomena  2006.12 

     More details

  • Asymptotic Behavior of the Solutions to the One-Dimensional Equations of a Viscous Reactive Gas

    柳 重則

    第33回発展方程式研究会、日本数学会  2007.9 

     More details

Research Projects

  • Large time behavior of the solutions to the equations of fluid motion.

    2011.4 - 2014.3

    YANAGI Shigenori

      More details

    Authorship:Principal investigator  Grant type:Competitive

    researchmap

  • Structure on the Set of Stationary Solutions for a Two Competing Species Model with Density-Dependent Diffusion

    2010 - 2012

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research  Grant-in-Aid for Scientific Research (C)

    KAN-ON Yukio, YANAGI Shigenori, KADOWAKI Mitsuteru

      More details

    Grant amount:\4030000 ( Direct Cost: \3100000 、 Indirect Cost:\930000 )

    In this research, we study the structure on the set of radially symmetric positive stationary solutions for a two competing species model with density-dependent diffusion, when the habitat of the community is the inside of a ball. Although the dimension of the habitat is an integer, we assume that it can be any real number. To establish the structure, we focus on the case where the diffusion rate of the species is positive and sufficiently small, employ the bifurcation theory and the comparison principle, and then investigate the property of eigenvalues and their corresponding eigenfunctions for the linearized operator around the stationary solution.

    researchmap

  • Bifurcation structure of stationary solutions for a reaction-diffusion system with density-dependent diffusion

    2007 - 2009

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research  Grant-in-Aid for Scientific Research (C)

    KAN-ON Yukio, YANAGI Shigenori, SAKAGUCHI Shigeru

      More details

    Grant amount:\4420000 ( Direct Cost: \3400000 、 Indirect Cost:\1020000 )

    We consider a competition-diffusion system with the density-dependent diffusion, which describes the dynamics of the population density for a two competing species community, and we study the bifurcation structure of radially symmetric stationary solutions of the system for the case where the habitat of the community is the inside of a certain ball. At this time, the local bifurcation structure around the constant stationary solution can be determined by the value of the integral whose integrand is the cubic of the Bessel function of the first kind with the positive weight function. In this research, when the dimension of the habitat is not bigger than 3, we determine the sign of the value of the integral by employing the mathematical method and the numerical verification method. The result of this research is applicable for determining the local bifurcation structure around the constant stationary solution to not only the competition-diffusion system but also the reaction-diffusion system.

    researchmap

  • 圧縮性 Navier-Stokes 方程式の解の漸近挙動に関する研究

    2001.4 - 2002.3

    文部科学省  科学研究費 奨励研究(A) 

    柳 重則

      More details

    Authorship:Principal investigator  Grant type:Competitive

    researchmap

  • Behavior of spatial critical points and zeros of solutions of partial differential equations

    2000 - 2002

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research  Grant-in-Aid for Scientific Research (B)

    SAKAGUCHI Shigeru, IKEHATA Masaru, HASHIMOTO Takahiro, YANAGI Shigenori

      More details

    Grant amount:\7600000 ( Direct Cost: \7600000 )

    1. Let Ω be a domain in the N-dimensional Euclidean space, and consider the initial-Dirichlet problem for initial data being a positive constant. Suppose that D is a domain satisfying the interior cone condition and D^^-⊂Ω. We considered the question how the boundary ∂D is a stationary isothermic surface of the solution, and obtained the following two theorems : (i) Let Ω be either a bounded domain or an exterior domain satisfying the exterior sphere condition. If ∂D is a stationary isothermic surface, then ∂Ω must be a sphere. (ii) Let Ω be an unbounded domain satisfying the uniform exterior sphere condition, and suppose that ∂Ω contains a nonempty open subset where the principal curvatures of ∂Ω with respect to the exterior normal direction to ∂Ω are nonnegative. Furthermore, assume that, for any r > 0, ∂Ω contains the graph over a (N -1)-dimensional ball with radius r > 0. If ∂D is a stationary isothermic surface, then ∂Ω must be either a hyperplane or two parallel hyperplanes.
    2. There is a conjecture of Chamberland and Siegel (1997) concerning the hot spots of solutions of the heat equation. Let Ω be a bounded domain in the Euclidean space containing the origin, and consider the initial-Dirichlet problem for initial data being a positive constant. The conjecture stated that if the origin is a stationary hot spot, then Ω is invariant under the action of an essential subgroup G of orthogonal transformations. Concerning this conjecture, we obtained the following four theorems when the space dimension is two : (i) Let Ω be a triangle. If the origin is a stationary hot spot, then Ω must be an equilateral triangle centered at the origin. (ii) Let Ω be a convex quadrangle, then Ω must be a parallelogram centered at the origin. (iii) If the origin is a stationary hot spot, then Ω is not a non-convex quadrangle. (iv) Let Ω be a convex m-polygon ( m = 5 or 6 ). Suppose that the inscribed circle centered at the origin touches every side of Ω, and suppose that the origin is a stationary hot spot. Then, if m = 5, Ω must be a regular pentagon centered at the origin, and if m = 6, Ω must be invariant under the rotation of one of three angles, π/3, 2π/3, and π.

    researchmap

  • Symmetric spaces and integrable systems

    2000 - 2001

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research  Grant-in-Aid for Scientific Research (C)

    KISO Kazuhiro, MORIMOTO Tohru, YAHAGI Shigenori, SHAKHMATOV Dmitri

      More details

    Grant amount:\1600000 ( Direct Cost: \1600000 )

    Between 2 years from Heisei 12 to 13, we have studied the generalized AKNS system and Hamiltonian structures associated with certain Lie algebras. We obtained important results on the construction of evolution equations and Hamiltonian structures in some cases containing sl (n,C) and certain symmetric Lie algebras. On the other hand, there are many obscure points about τ functions and the relation with the geometry of symmetric spaces. We want to continue the research. In particular we can say only a little about the relation with the curvature of symmetric spaces. We want to publish our results after making clear such problems.
    As a by-product of the study we published the following result on Hokkaido Mathematical Journal : Let A and B be two points on a surface, and connect A and B by certain curve. Let P be a point and connect A, P and B, P by geodesies. Provided that PAB constitute a triangle, let S be the area of the triangle. We consider S to be a function of P. Then, if the curvature of the surface is constant, S is harmonic. Moreover we can show that the angle APB is also harmonic.

    researchmap

  • 圧縮性 Navier-Stokes 方程式の解の挙動に関する研究

    1999.4 - 2000.3

    文部省  科学研究費 奨励研究(A) 

    柳 重則

      More details

    Authorship:Principal investigator  Grant type:Competitive

    researchmap

  • Optimization in stochastic systems and applications to consumption problems

    1999 - 2000

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research  Grant-in-Aid for Scientific Research (C)

    MORIMOTO Hiroaki, ISHIKAWA Yasushi, YANAGI Shigenori, KAWAGUCHI Kazuhito

      More details

    Grant amount:\2100000 ( Direct Cost: \2100000 )

    The objective is to study the optimization problems in Mathematical Economics and Mathematical Finance by the recent theory of stochastic control. The main interest lies in finding the solutions of non-linear differential equations called the Hamilton-Jacobi-Bellman equations. It is proved that these equations admit the classical solutions by using the viscosity solution method. The optimal policies are shown to exist and given from the optimality conditions of the equations. The research results supported by this grant can be stated in the following summaries of three articles below.
    1 : We study the ergodic control problem of production planning in stochastic manufacturing systems with constant demand. The optimal control and the minimum value are given by a solution to the corresponding Bellman equation.
    2 : We study consumption/investment problems with long-term time-average utilities. The associated Hamilton-Jacobi-Bellman equation can be solved under some regularity conditions of utility-rate function, and the optimal portfolio and consumption-rates are exhibited in explicit forms. An application to the optimization problem with finite horizon is also given.
    3 : We study the stochastic optimization problem of renewable resources to maximize the expected discounted utility of exploitation. The optimal policy is shown to exist and given in a feedback form or a stochastic version of Hotelling's rule.

    researchmap

  • 圧縮性 Navier-Stokes 方程式の解の漸近挙動について

    1998.4 - 1999.3

    文部省  科学研究費 奨励研究(A) 

    柳 重則

      More details

    Authorship:Principal investigator  Grant type:Competitive

    researchmap

  • Asympotic behaviors of spatial critical points and zeros of solutions of parabolic equations

    1998 - 1999

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research  Grant-in-Aid for Scientific Research (C)

    SAKAGUCHI Shigeru, NAITO Manabu, HASHIMOTO Takahiro, JIMBO Shuichi, KISO Kazuhiro, MORIMOTO Hiroaki

      More details

    Grant amount:\3800000 ( Direct Cost: \3800000 )

    (1) Level surfaces invariant with time of solutions of diffusion equations
    We consider solutions of the initial-Neumann problem for the heat equation on bounded Lipschitz domains in Euclidean space, and with the help of the classification theorem of isoparametric hypersurfaces in Euclidean space of Levi-Civita (1937) and Segre (1938), we classify the solutions whose isothermal surfaces are invariant with time. Furthermore, we can deal with nonlinear diffusion equations such as the porous medium equation, and we get similar classification theorems.
    (2) Asymptotic behaviors of the interfaces with sign changes of solutions of the one-dimensional porous medium equation
    We consider the Cauchy and the initial-Dirichlet problems for the one-dimensional evolution p-Laplacian equation with p>1 for nonzero, bounded, and nonnegative initial data having compact support. It was shown that after a finite time the set of spatial critical points of the solution u in {u > 0} consists of one point, say x = x(t) for time t. In this research, we show that after a finite time x(t) is CィイD11ィエD1 in t. Furthermore, we can deal with generalized porous medium equations with sign changes, and we get CィイD11ィエD1 regularity of the interfaces with sign changes. Also, in the initial-Dirichlet problem for the one-dimensional evolution p-Laplacian equation, we show that there exists a positive constant β=β(ρ) such that x(t)tィイD1-βィエD1 tends to some positive constant as t → ∞.
    (3) Stationary critical points of the heat flow and the symmetries of the domains
    We consider the initial-Dirichlet problem for the heat equation on bounded and simply connected domains in the plane. By a new method with the help of the Riemann Mapping theorem in complex analysis, we give a characterization of domains invariant under the rotation of angle 2π/3 by making use of the stationary critical points of the heat flow. (Previously, only the characterizations of balls and centrosymmetric domains were obtained.) Furthermore, we consider stationary critical points of the heat flow in sphere SィイD1NィエD1 and in hyperbolic space HィイD1NィエD1, and prove several results corresponding to those in Euclidean space which have been proved in Magnanini and Sakaguchi (1997, 1999). Precisely. We get the characterizations of geodesic balls and centrosymmetric domains by making use of the stationary critical points of the heat flow.

    researchmap

  • 圧縮性 Navier-Stokes方程式の解の漸近挙動について

    1997.4 - 1998.3

    文部省  科学研究費 奨励研究(A) 

    柳 重則

      More details

    Authorship:Principal investigator  Grant type:Competitive

    researchmap

  • 不確定性を含む確率制御

    1996

    日本学術振興会  科学研究費助成事業  基盤研究(C)

    森本 宏明, 柳 重則, 若木 宏文, 森作 常生, 津田 光一, 木曽 和啓

      More details

    Grant amount:\1200000 ( Direct Cost: \1200000 )

    1.確率制御問題の研究について
    本年度の成果は、制約条件をもつ時間平均コスト確率制御問題に関する解法を見つけたことである。これは研究発表欄であげた論文で発表された。さらに本研究費を使って他大学の研究者との活発な議論を重ねた結果、さらに複雑な生産計画問題に対しても解決できる目途がついた。また、いくつかの解決できた結果については目下投稿中の論文で発表する予定である。もう一つの成果は、本研究費によって国際学会(The 35th IEEE Conference on Decision and Control)での研究発表及び資料収集ができたことである。特に、今年は、この学会のために、多くの外国の研究者が来日して国際交流ができたのは非常に有益であった。不確定性を伴う確率微分方程式に対する自己調整型制御問題について助言を得たり、今後の研究対象となる数理経済と確率制御の関連性などについて活発な議論を行った。共同研究のテーマして時間平均コスト確率制御問題に対する方程式の粘性解の意味での取り扱い方を探る方向を模索できるまでに至っている。これからも他大学の研究者との活発な交流は不可欠である。
    2.数理物理に表われる逆問題の追求について
    本研究費によって、柳、内藤教官および新任の橋本教官に出張していただき関数方程式に関する各種の研究会で参加発表を行ってもらった。今後、固有値問題と確率制御の間の興味ある関連性について、深く究明していきたい。
    3.パラメーター変動によるコンピューターシミュレイションについて
    主として山本教官に本研究費を使って出張していただき、他大学の研究者と活発な議論を重ねて充分な成果を得た。数値解析的方向から不確定性を伴うシステムへの反応が期待される。
    4.統計からのアプローチについて
    本年度は、国際学会や関連するシンポジウムがあって多忙を極めたために、この課題についての十分な成果を得ることができなかった。

    researchmap

  • 圧縮性Navier-Stokes方程式の真空解の研究

    1995

    日本学術振興会  科学研究費助成事業  奨励研究(A)

    柳 重則

      More details

    Grant amount:\900000 ( Direct Cost: \900000 )

    本研究期間において、圧縮性粘性流体の1次元アイゼントロピックモデルに対する考察を行い、時間周期的な外力の存在下での時間周期解の存在について結果を得た。
    1次元内の有界領域における気体の運動は、温度一定の条件の下で、質量保存則及び運動量保存則の2つの方程式で記述されることが知られている。この方程式系に対して、Dirichret境界条件を与え、境界値問題を考察した。気体に対し外部から加えられる力が時間周期的であるとき、時間周期解が常に存在するか否かを調べることが目的である。気体はアイゼントロピック流である、つまり気体の圧力pと比体積vの間にp=av^<-γ>の関係が成り立つものとする。ここでγは1以上の定数で、断熱定数と呼ばれる。このとき、断熱定数γに依存する定数C(γ)が存在し、外力の大きさがC(γ)でおさえられるならば、外力と同じ周期を持つ時間周期解が少なくとも1つ存在することが明らかとなった。このC(γ)はγが1に近づくとき無限大に発散する。従って任意に与えられた外力に対して、断熱定数が適当に1に近ければ、時間周期解が存在することになる。この意味において今回得られた結果は、理想気体、すなわち断熱定数が1である場合に対して得られていた従来の結果の拡張となっている。
    解の一意性に関しても考察を行い、外力がある値より小さければ、解が一意であることが明らかとなった。しかしながら、大きな外力に対して一意性は不明である。数値実験において、2倍、3倍周期解等の存在が確認されており、周期解分岐がおこっているものと予想されるが、数学的な解析は今後の研究課題となっている。

    researchmap

▼display all

Teaching Experience (On-campus)

▼display all

Teaching Experience

  • 微分方程式論II

    Institution:愛媛大学

     More details

  • 解析学続論

    Institution:愛媛大学

     More details

  • 数学セミナーI

    Institution:愛媛大学

     More details

  • 数学演習

    Institution:愛媛大学

     More details

  • 関数方程式論

     More details

  • 微積分演習

    Institution:愛媛大学

     More details

  • 新入生セミナーA

    Institution:愛媛大学

     More details

  • 新入生セミナーB

    Institution:愛媛大学

     More details

  • 複素解析学I

    Institution:愛媛大学

     More details

  • 複素解析学II

    Institution:愛媛大学

     More details

  • 微分方程式論I

    Institution:愛媛大学

     More details

  • 微積分I

    Institution:愛媛大学

     More details

  • 微積分II

    Institution:愛媛大学

     More details

  • 解析学概論

     More details

  • 数理科学特論

     More details

▼display all

Social Activities

  • 模擬授業

    Role(s): Lecturer

    2017.9

     More details

    Type:Other

    researchmap

  • 教員免許更新講習

    Role(s): Lecturer

    2017.7

     More details

    Type:Certification seminar

    researchmap

  • 教員免許更新講習

    Role(s): Lecturer

    2015.7

     More details

    Type:Certification seminar

    researchmap

  • 教員免許更新講習

    Role(s): Lecturer

    2013.7

     More details

    Type:Certification seminar

    researchmap

  • 教員免許更新講習

    Role(s): Lecturer

    2010.8

     More details

    Type:Certification seminar

    researchmap