Updated on 2025/03/27

写真a

 
Iizuka Takeshi
 
Organization
Graduate School of Science and Engineering (Science) Major of Science and Engineering Physics Associate Professor
Title
Associate Professor
Contact information
メールアドレス
External link

Degree

  • Ph.D

Research Interests

  • Nonlinear Dynamics Solitons Chaos Econophysics Pedestrian flow

  • dynamic stabilization

  • カオス

  • ソリトン

  • 非線形動力学

Research Areas

  • Natural Science / Mathematical physics and fundamental theory of condensed matter physics  / 非線形力学

Education

  • The University of Tokyo   Graduate School, Division of Science

    - 1993

      More details

  • The University of Tokyo

    - 1993

      More details

    Country: Japan

    researchmap

  • Waseda University   Faculty of Science and Engineering

    - 1988

      More details

  • Waseda University   School of Science and Engineering

    - 1988

      More details

    Country: Japan

    researchmap

Research History

  • Ehime University   Faculty of Science   Associate Professor

    1994.4

      More details

Professional Memberships

Committee Memberships

  • 日本物理学会   四国支部役員  

    2013.4 - 2017.3   

      More details

    Committee type:Academic society

    researchmap

  • 日本物理学会   代議員  

    2007 - 2009   

      More details

    Committee type:Academic society

    日本物理学会

    researchmap

  • 日本物理学会   分科会世話人  

    1995   

      More details

    Committee type:Academic society

    日本物理学会

    researchmap

Papers

  • 高速加振系における変調不安定性

    飯塚剛

    京都大学数理解析研究所講究録   2153   222 - 228   2020.4

     More details

    Authorship:Lead author   Language:Japanese   Publishing type:Research paper (scientific journal)  

    researchmap

  • 高速加振による波動系の不安定化とキンクの生成

    飯塚剛

    京都大学数理解析研究所講究録   2128   83 - 89   2019.9

     More details

    Authorship:Lead author   Language:Japanese   Publishing type:Research paper (scientific journal)  

    researchmap

  • 不安定波動系におけるダイナミック安定化

    飯塚 剛

    京都大学数理解析研究所講究録   2076   165 - 174   2018.7

     More details

  • Statistical Analysis of the Panic in Pedestrian Flow

    Springer-Verlag Edited by S.P.HoogendoornTraffic and Granular Flow '03   393   2004

     More details

  • Gap solitons in nonlinear polyatomic chains Reviewed

    T Iizuka

    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN   71 ( 5 )   1284 - 1295   2002.5

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:PHYSICAL SOC JAPAN  

    Dynamics of gap solitons in various kinds of polyatomic chains are analyzed comprehensively. First, we consider a case that the periodic modulation of the anharmonic lattice parameters is small (shallow grating) and obtain coupled mode models between the forward and backward propagating waves at the Bragg wavenumber, Depending on the period of the chain N(> 1) and on the nonlinearity, we derive four types of coupled mode equations. Moving localized solutions for gap solitons are obtained analytically. It is found that owing to the quadratic nonlinearity, static de waves should be taken into account, which leads to the concept of "dynamical rectification". The theoretical results for gap solitons are checked by numerical simulations. Secondly, we consider the case of large modulation of the lattice parameters (deep grating). We develop a theory of the nonlinearity-induced carrier-wave modulations of the lattice mode dynamics (Bloch wave) and derive the effective nonLinear Schrodinger equation. Numerical simulations of the standing and moving solitons and their collision revealed almost elastic interactions of the gap soliton.

    DOI: 10.1143/JPSJ.71.1284

    Web of Science

    researchmap

  • Gap solitons in quadratically nonlinear gratings: Beyond the cascading limit Reviewed

    T Iizuka, CM de Sterke

    PHYSICAL REVIEW E   62 ( 3 )   4246 - 4250   2000.9

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:AMERICAN PHYSICAL SOC  

    We consider pulse propagation in quadratically nonlinear gratings. Assuming that the phase mismatch between the fundamental and the second-harmonic frequencies delta k is large, we present a perturbation method in delta k(-1). In the well known cascading limit, terms to delta k(-1) are kept; here we keep terms to delta k(-2), which lends to another type of coupled mode equations. Numerical calculation of the full equations support our theoretical results.

    DOI: 10.1103/PhysRevE.62.4246

    Web of Science

    PubMed

    researchmap

  • Corrections to coupled mode theory for deep gratings Reviewed

    T Iizuka, CM de Sterke

    PHYSICAL REVIEW E   61 ( 4 )   4491 - 4499   2000.4

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:AMERICAN PHYSICAL SOC  

    We generalize the standard coupled mode equations describing interactions between forward and backward propagating waves in a nonlinear optical Bragg grating. Including the lowest order corrections of the grating depth, we obtain a Hamiltonian system that can be regarded as an extension of the usual coupled mode equations for shallow gratings. The results are consistent with existing results based on a Bloch wave expansion. We also obtain exact traveling solitary wave solutions, that can be regarded as a generalized gap soliton, modified by the grating's depth.

    DOI: 10.1103/PhysRevE.61.4491

    Web of Science

    PubMed

    researchmap

  • Optical gap solitons in nonresonant quadratic media Reviewed

    Takeshi Iizuka, Yuri S. Kivshar

    Physical Review E - Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics   59 ( 6 )   7148 - 7151   1999

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    We demonstrate an important role of the process of optical rectification in the theory of nonlinear wave propagation in quadratically nonlinear [or [Formula Presented]] periodic optical media. We derive a novel physical model for gap solitons in [Formula Presented] nonlinear Bragg gratings. © 1999 The American Physical Society.

    DOI: 10.1103/PhysRevE.59.7148

    Scopus

    PubMed

    researchmap

  • Soliton Scattering by an Object in Nonlinear Media Reviewed

    Journal of the Physical Society of Japan   67   11   1998

  • Grating Solitons in Optical Fiber Reviewed

    Journal of the Physical Society of Japan   66   8   1997

  • Simulation of envelope soliton scattering in discontinuous media Reviewed

    T Iizuka, H Amie, T Hasegawa, C Matsuoka

    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN   65 ( 10 )   3237 - 3241   1996.10

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:PHYSICAL SOC JAPAN  

    Scattering of the nonlinear Schrodinger (NLS) solitons in discontinuous media is studied numerically. As a physical model, one-dimensional anharmonic lattice which has a discontinuity in its mass distribution, is analized. After the collision of the incident NLS soliton against the mass interface, we detect the amplitude of the reflected and transmitted solitons. They coincide very well with those of the theoretcal ones (T. Iizuka and M. Wadati, J. Phys. Sec. Jpn. 61 (1992) 3077), which is based on the inverse scattering method.

    DOI: 10.1143/JPSJ.65.3237

    Web of Science

    researchmap

  • Numerical studies on scattering of the NLS soliton due to an impurity

    T Iizuka, H Amie, T Hasegawa, C Matsuoka

    PHYSICS LETTERS A   220 ( 1-3 )   97 - 101   1996.9

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:ELSEVIER SCIENCE BV  

    The scattering of nonlinear Schrodinger solitons due to an impurity in anharmonic lattices is studied numerically. At most one soliton is generated in both reflected and transmitted waves. Their amplitudes coincide very well with those of the theoretical result, which has been obtained through the inverse scattering method.

    DOI: 10.1016/0375-9601(96)00489-6

    Web of Science

    researchmap

  • ENVELOPE SOLITON OF THE BLOCH WAVE IN NONLINEAR PERIODIC LATTICES

    T IIZUKA

    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN   64 ( 9 )   3215 - 3225   1995.9

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:PHYSICAL SOC JAPAN  

    Using a recently presented theory of nonlinear periodic systems, we investigate wave propagations in anharmonic periodic lattices. If the system is linearized, it has Bloch type solutions which are regarded as an extension of the monochromatic waves. It is shown that the modulations of the Bloch wave due to the nonlinearity and the dispersion obey the nonlinear Schrodinger equation. One of the important results is that envelope soliton propagates in the periodic lattices.

    DOI: 10.1143/JPSJ.64.3215

    Web of Science

    researchmap

  • ENVELOPE SOLITON OF THE BLOCH WAVE IN NONLINEAR PERIODIC-SYSTEMS

    T IIZUKA

    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN   63 ( 12 )   4343 - 4349   1994.12

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:PHYSICAL SOC JAPAN  

    Nonlinear waves in a one-dimensional periodic system are investigated. If the system is linearized, it has Bloch type solutions. It is shown that envelopes of the Bloch wave obey the nonlinear Schrodinger equation. Therefore, soliton propagations are observed in the system. Our method is applicable to many nonlinear periodic systems.

    DOI: 10.1143/JPSJ.63.4343

    Web of Science

    researchmap

  • Coupled Hybrid Nonlinear Schr(]E88D8[)dinger Equation and Optical Solitons(共著)

    Journal of the Physical Society of Japan   63 ( 8 )   2887 - 2894   1994

  • Nonlinear Refraction and Reflection of Line Soliton Due to a Discontinuity(共著)

    Journal of the Physical Society of Japan   62   1161 - 1168   1993

     More details

  • Soliton Scattering Due to a Heavy Impurity in Nonlinear Lattice(共著)

    Journal of the Physical Society of Japan   62 ( 6 )   1932 - 1938   1993

  • Amomalous Diffusion of Silitons in Random Systems

    Phys. Lett.   181 ( 1 )   39 - 42   1993

  • Nonlinear Waves in Inhomogenous Lattices(共著) Reviewed

    Takeshi Iizuka, Miki Wadati

    Journal of the Physical Society of Japan   61 ( 7 )   2235 - 2240   1992

  • Soliton Transmission and Reflection in Discontinuous Media(共著) Reviewed

    Journal of the Physical Society of Japan   61 ( 9 )   3077 - 3085   1992

  • A Coupled Nonlinear Schr(]E88D8[)dinger Equation and Optical Solitons(共著) Reviewed

    Journal of the Physical Society of Japan   61 ( 7 )   2241 - 2245   1992

  • Shallow Water Waves Over an Uneven Bottom and an Inhomogeneous KP Equation(共著) Reviewed

    Chaos, Solitons & Fractals   2 ( 6 )   575 - 582   1992

     More details

  • Scattering of Envelope Soliton by a Mass Impurity in Nonlinear Lattices(共著) Reviewed

    Takeshi Iizuka, Miki Wadati

    Journal of the Physical Society of Japan   61 ( 12 )   4344 - 4349   1992

  • The Unstable Nonlinear Schr(]E88D8[)dinger Equation and Dark Solitons(共著) Reviewed

    Takeshi Iizuka, Miki Wadati, Tetsu Yajima

    Journal of the Physical Society of Japan   60 ( 9 )   2862 - 2875   1991

  • The Theory and Applications of The Unstable Nonlinear Sch(]E88D9[)odinger Equation(共著) Reviewed

    Chaos, Solitons & Fractals   1 ( 3 )   249 - 271   1991

     More details

  • Soliton phenomena in unstable media(共著) Reviewed

    Physica   51   388 - 406   1991

     More details

  • Propagation of Solitons in Random Lattices(共著) Reviewed

    Journal of the Physical Society of Japan   60 ( 12 )   4167 - 4174   1991

  • The Rayleigh-Taylor Instability and Nonlinear Waves(共著) Reviewed

    Journal of the Physical Society of Japan   59 ( 9 )   3182 - 3193   1990

  • Hydrogen Coverage on W(001) Surface as a Dynamical System(共著) Reviewed

    Takeshi Iizuka, Yasushi Iwata, Miki Wadati, Ken-ichiro Komaki

    Journal of the Physical Society of Japan   58 ( 12 )   4329 - 4333   1989

▼display all

Books

  • Soliton Phenomena in Periodic System

    NONLINEAR EVOLUTION EQUATIONS & DYNAMICAL SYSTEMS (World Scientific)  1995 

     More details

  • Soliton Phenomena in Periodic System

    NONLINEAR EVOLUTION EQUATIONS & DYNAMICAL SYSTEMS (World Scientific)  1995 

     More details

  • ソリトンの衝突(数理科学)

    和達 三樹, 飯塚 剛( Role: Joint author)

    サイエンス社  1993.5 

     More details

  • Solitons in Inhomogeneous Media(共著)

    Nonlinear Dispersive Waves ed. by L. Dednath (Oxford Univ. Press and World Scientific Company)  1991 

     More details

  • Solitons in Inhomogeneous Media(共著)

    Nonlinear Dispersive Waves ed. by L. Dednath (Oxford Univ. Press and World Scientific Company)  1991 

     More details

Presentations

  • 加振された波動系におけるブリザーの安定性

    飯塚剛

    日本物理学会分科会  2020.9 

     More details

    Event date: 2020.9

    Presentation type:Oral presentation (general)  

    researchmap

  • 波動系のダイナミック安定化とブリザーの生成

    飯塚 剛

    日本物理学会年会  2020.3 

     More details

    Event date: 2020.2 - 2020.3

    Presentation type:Oral presentation (general)  

    researchmap

  • 高速加振系における変調不安定性

    飯塚剛

    RIMS研究集会「非線形波動現象の数理とその応用」  2019.10 

     More details

    Event date: 2019.10

    Presentation type:Oral presentation (general)  

    researchmap

  • 高速加振による波動系の不安定化とキンクの形成

    飯塚 剛

    非線形波動現象の数理とその応用(RIMS共同研究)  2018.10 

     More details

    Presentation type:Oral presentation (general)  

    researchmap

  • Dynamic stabilizaiion by random vibration

    IIZUKA Takeshi

    2018.3 

     More details

    Language:Japanese   Presentation type:Oral presentation (general)  

    researchmap

  • Dynamic stabilization in wave system and generation of kinks

    IIZUKA Takeshi

    2019.3 

     More details

    Language:Japanese   Presentation type:Oral presentation (general)  

    researchmap

  • 不安定波動系におけるダイナミック安定化

    飯塚 剛

    非線形波動現象の数理とその応用(RIMS)  2017.10 

     More details

    Language:Japanese   Presentation type:Oral presentation (general)  

    researchmap

  • ダイナミック安定化のブレーキング

    飯塚 剛

    日本物理学会年次大会  2017.3 

     More details

    Language:Japanese   Presentation type:Oral presentation (general)  

    researchmap

  • 非周期的な加振によるダイナミック安定化

    飯塚 剛

    日本物理学会年次大会  2016.3 

     More details

    Language:Japanese   Presentation type:Oral presentation (general)  

    researchmap

  • 河川の長さの分布にみられるべき乗則

    飯塚 剛

    日本物理学会秋季大会  2012.9 

     More details

    Language:Japanese   Presentation type:Poster presentation  

    researchmap

  • Jaming Phase trainsition in couterpart particle flows.

    IIZUKA Takeshi

    2008.4 

     More details

    Language:Japanese   Presentation type:Oral presentation (general)  

    researchmap

  • ダイナミック安定化のある一般化

    飯塚 剛

    日本物理学会秋季大会  2015.9 

     More details

    Language:Japanese   Presentation type:Oral presentation (general)  

    researchmap

  • 島の面積分布にみられるべき乗則

    飯塚 剛

    日本物理学会年次大会  2013.3 

     More details

    Language:Japanese   Presentation type:Poster presentation  

    researchmap

  • 不均一性における非線形波動~底の深さが不均一な3次元浅水波

    京大数理研録究録830『流体における波動現象の数理とその応用』  1993 

     More details

▼display all

Research Projects

  • 非線形フォトニック結晶における局在パルスおよびビーム散乱の理論的研究

    2002 - 2004

    日本学術振興会  科学研究費助成事業  若手研究(B)

    飯塚 剛

      More details

    Grant amount:\3200000 ( Direct Cost: \3200000 )

    平成15年度は2次元のフォトニック結晶に焦点を当てて静止局在波の存在を追及したが、平成16年度は再び1次元のモデルを考えた。ただし、ポテンシャル効果を考慮に入れてギャップモードにおける動く局在波の散乱、およびとラッピングを数値シミュレーションの立場から研究した。ポテンシャルがδ関数的ならば、トラップされた局在波の存在はKivsharらによって理論的に予言されている。われわれは、非線形結合モード方程式をベースにギャップソリトン解をδ関数ポテンシャルに入射させた。
    ポテンシャル強度(以下単に強度と呼ぶ)が十分正の値で大きいときは、いったんは完全反射波的にな挙動を示すが反射波は安定な局在波とはならず徐々に分散していった。強度の絶対値が小さいときは反射波透過波両方が出現するが、いずれも時間と共に局在性が失われた。これらの性質は非線形シュレディンガー(NLS)モデルとは大きく異なっている。
    強度が負の値で十分大きいときは反射波があるものの、一部のエネルギーがポテンシャルにトラップされた形になっており局在波が観測された。モード解析を行ったら丁度ギャップ内に入っておりこれはKivsharらが発見したモードだと考えられる。
    また1次元のフィボナッチフォトニック結晶に関する理論的研究も行った。これは以前から研究されていた量子1体問題に焼きなおすことが可能であり、代数学的(逆ベキ的)に減衰する孤立波の存在を予想した。

    researchmap

  • ブラッグ格子における光ソリトンとその応用

    2001

    日本学術振興会  科学研究費助成事業  奨励研究(A)

    飯塚 剛

      More details

    Grant amount:\2000000 ( Direct Cost: \2000000 )

    前年度は、ブラッグ格子構造をもつχ^<(3)>非線形光学媒質における波動現象の解析を行った。引き続き本年度はχ^<(2)>媒質に対して焦点当てて、次のようなモデル方程式を提出した。
    i((∂)/(∂t)+υ_g(∂)/(∂z))E_++κE_+(A|E_+|^2+B|E_-^2+CE^<(0,0)>)E_+=0,
    i((∂)/(∂t)-υ_g(∂)/(∂z))E_-+κ^*E_++(B|E_+|^2+A|E_-|^2+CE^<(0,0)>)E_-=0,
    ((∂^2)/(∂z^2)-(1)/(υ^2_0)(∂^2)/(∂t^2))E^<(0,0)>+D(∂^2/∂t^2)(|E_+|^2+|E_-|^2)=0,
    ここで、E_+とE_-はそれぞれ、進行波、ブラッグ反射波の包絡線を表しており、E^<(0,0)>はゼロ波長モードの振幅である。υ_g, υ_0はそれぞれブラッグ波数、ゼロ波数における平均群速度であり、κ, A, Bは全て定数である。注意すべきことは、従来からの2次の共鳴領域ではゼロ波長モードは無視することができたが、ここで解析した非共鳴領域においてはこのDCモードが独立成分としてE^<(0,0)>モデル方程式に現れることである。
    このような2次の非線形で励起されたDCモードを「光整流効果」言う。上記モデルは厳密解としてギャップソリトン解を持つことがわかった。これよりソリトンの速さ増すほどDCモードも振幅増加することが示された。直感的には、DCモードが直流的な作用としてブラッグモードに働きかけ、全体としての一方向のに光を伝播させている、と理解することができる。

    researchmap

  • Study on the pondermotive action of an ultrasonic wave

    1999 - 2000

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research  Grant-in-Aid for Scientific Research (C)

    HASEGAWA Takahi, MATSUOKA Chihiro, IIZUKA Takeshi

      More details

    Grant amount:\1900000 ( Direct Cost: \1900000 )

    The acoustic radiation pressure is customarily interpreted as the time-averaged pressure acting on an object in a sound field, which results in a unidirectional force that moves the object. The purpose of the present research is to get behind the mechanism of the dynamic effect fundamentally.
    Historically, the acoustic radiation pressure has been discussed in distinction between the Langevin radiation pressure experienced in ordinary experimental conditions and the Rayleigh radiation pressure experienced on the wall of a closed vessel. Furthermore there are variant theories of the respective radiation pressure, and each of them contains leaps in logic and unnecessary assumptions. As for the latter, in particular, one theoretical estimate differs from another by a factor of 200%, and nobody has proved the theories experimentally. That is to say the theory remains in a state of some confusion. In the present research, therefore, we attempt to develop a unified theory that covers both the Rayleigh and the Langevin radiation pressure.
    For a start, we unify the theory of the Langevin radiation pressure which is complicated in regard to the origin of tensor properties, and prove that the radiation pressure is tensor as a result that the surface of an obstacle vibrates. Next, we prove that the Langevin radiation pressure is a special case of the Rayleigh radiation pressure, which being looked upon a pure pressure up to now reveals tensor properties. In the case of the Rayleigh radiation pressure, the effect of medium expansion caused by nonlinearity of sound waves cannot be disregarded. Consequently, the expression "a closed vessel" in the definition of the Rayleigh radiation pressure needs to be reconsidered.
    The present theory eliminates ambiguity in the traditional theory of radiation pressure over and it is proved that radiation pressure is tensor properties in general.

    researchmap

  • 2次の非線形光学媒質におけるグレーティングソリトン

    1999

    日本学術振興会  科学研究費助成事業  奨励研究(A)

    飯塚 剛

      More details

    Grant amount:\800000 ( Direct Cost: \800000 )

    researchmap

  • Studies of Nonlinear Waves and Nonlinear Dynamical Systems

    1997 - 1999

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research  Grant-in-Aid for Scientific Research (B).

    WADATI Miki, KIMURA Yoshifumi, IIZUKA Takeshi, HIKAMI Kazuhiro, YAJIMA Tetsu, DEGUCHI Tetsuo

      More details

    Grant amount:\11100000 ( Direct Cost: \11100000 )

    1. For one-dimensional XXZ chain which is known to be quantum integrable spin system, scalar products and correlation functions of the asymmetric case, and spontaneous magnetization of the bounded case are calculated explicitly.
    2. Static and dynamical properties of Bose-Einstein condensate under magnetic trap are investigated. Stability of D-dimensional nonlinear Schrodinger equation, stability of 2-component boson system, dynamics of boson-fermion system, and ground state and its stability of anisotropic condensate are analysed in detail.
    3. An exact solution of the Navier-Stokes equations which describes a falling filament is found. The linear stability analysis of the solution gives a criterion for the pinch-off at the end points and the intermediate points.
    4. Calogero model, Sutherland model and Ruijsenaars model are known as quantum integrable Particle systems. Their algebraic structures, integrabilities and orthogonal bases are clarified in a systematic way.
    5. By extending the inverse scattering method, discrete multi-component soliton equations and their solutions are obtained. A new type of discrete multi-component nonlinear Schrodinger equation is also obtained.
    6. For Volterra equation and Bogoyavlensky lattice, algebraic structures and integrabilities are clarified. Further, by discretizing time and dependent variables, integrable cellular automata are constructed.
    7. A theory of fermionic R-matrix is developed to treat quantum integrable particle systems. This development enables us to study fermion systems without recourse to the Jordin-Wigner transformation. The integrable boundary problem can be treated as well.

    researchmap

  • 光ファイバーにおけるグレーティングソリトンの新しい非線形波動論による解析

    1997 - 1998

    日本学術振興会  科学研究費助成事業  奨励研究(A)

    飯塚 剛

      More details

    Grant amount:\2000000 ( Direct Cost: \2000000 )

    前年度の研究に引き続き、光ファイバーグレーティングにおける、ソリトン現象の理論的研究を行った。ファイバーグレーティングでは誘電率をファイバー方向に周期的に変化させることによって、人工的に分散性を生み出す事を可能にしている。実際、位相マスク法などによる作成法も確立している。
    グレーティング強度が強い場合は、基本波としていわゆるブロッホ波を扱わなくてはいけない。その変調が非線形シュレディンガー方程式に従うことが明らかになったのは前年度得た結果であった。一方グレーティング強度が弱い場合は従来から、カップルドモード(CM)方程式として知られる標準的なモデルで解析が行われた。ギャップソリトンはこの系からはじめて見出されることができた。しかしながら、このCM方程式はグレーティング強度の最低次の効果しか考慮に入れておらず、ブロッホ波理論とのつながりは未知である。
    そこで本研究では、強度の2次の効果まで取り入れた理論を確立した。主な結果をまとめると以下の通りである。
    1. 従来のCMに補正項を加えた一般的なCM方程式を導出した。
    2. 適当な変数変換により上の方程式をハミルトニアン系に帰着することができた。
    3. 定常解としてブライト型ソリトン、ダークホール、ブライトホールを見出すことに成功した。特に最初の解は、強グレーティング系におけるギャップソリトンに対応する。

    researchmap

  • 周期系におけるブロッホ波の包絡ソリトン

    1995

    日本学術振興会  科学研究費助成事業  奨励研究(A)

    飯塚 剛

      More details

    Grant amount:\900000 ( Direct Cost: \900000 )

    周期的不均一性を持つ、非線形波動系におけるソリトン現象の解明を行った。線形周期系では、ブロッホ波と呼ばれる単色波を一般化した型の基本解の存在が、一般的に知られている。一方、1次元の均一非線形系において、単色波の変調が非線形シュレディンガー(NLS)方程式に支配されることが、多くの系でわかっている。本研究においては、このアイデアを周期的系に拡張することに成功した。この際、搬送波は単色波ではなく、ブロッホ波が採用された。結果的に、ブロッホ波の変調もNLS方程式に支配されることが、非線形格子、光ファイバー系において証明された。この際、一般の周期系に適用できる逓減摂動法を構築することも行った。これらの結果は、「周期系におけるソリトン現象」という新たな概念を、非線形物理学にもたらすと考えられる。さらに注目すべきは、線形波において、許されない振動数帯(ギャップ)が存在するにも関わらず、非線形系効果による振動数のシフトによって、ギャップ内に相当する振動数のソリトンが存在することも明らかになった。これはギャップソリトンと呼ばれていて、光ファイバーにおいて最近提唱された現象であるが、今回の研究ではじめて非線形格子においても存在し得ることが明らかになった。特に、2原子格子において、数値シュミレーションを行い、理論から予想されるギャップソリトンの存在が確認された。今後は、流体系プラズマ系にこのアイデアを応用したい。

    researchmap

  • Theory and Applications of Nonlinear Dynamical Systems

    1994 - 1995

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research  Grant-in-Aid for international Scientific Research

    WADATI Miki, SEGUR Harvey, ABLOWITZ Mark, NAGAO Taro, HIKAMI Kazuhiro, IIZUKA Takeshi, DEGUCHI Tetsuo, YAJIMA Tetsu

      More details

    Grant amount:\8400000 ( Direct Cost: \8400000 )

    Theory and Applications of Nonlinear Dynamical Systems
    In this project.a main theme is the analysis of nonlinear dynamical systems with large degrees of freedom which appear in various fields of physics. The followings are summary of the results.
    1. Quantum integrable systems with long-range interactions
    We have developped the quantum inverse scattering method for onedimensional quantum particle systems with long-range interactions. Integrabilities of the Calogero-Moser model and the Sutherland model are proved. Those models are extended so as to include internal degrees of freedom (spins). The Dunkl operator approach and the exchange operator approach are also clarified.
    2. Geometrical models
    The purposes are two folds. One is the extension of the soliton systems to higher-dimensional ones and the other is a general setting for descriptions of geometrical objects in physics. We have developped the level-set formulation of the surfaces in arbitrary space-dimension. Special solutions of the curve-lengthening equation which generalize the Saffman-Taylor finger solution are found.
    3. Discrete dynamical models
    The geometrical models are extended into the discrete curves and the discrete surfaces. The relations with descrete integrable systems (the discrete Modified K-dV hierarchy) are found.
    4. Two-dimensional integrable systems
    The Davey-Stewartson equation which is considered to be a two-dimensional extension of the nonlinear Schrodinger equation is studied numerically. The stability of dromions and the role of the mean flows are clarified.
    5. Random Knotting
    As a model for polymers, topological configurations of random walks are investigated. Probability of a knot K as a function of the length N.P (K.N).is determined by numerical experiments. The proposed formula for B (K.N) agrees well with the numerical results.

    researchmap

  • 歩行者流の数理

      More details

    Grant type:Competitive

    researchmap

  • 光物質におけるギップソリトン

      More details

    Grant type:Competitive

    researchmap

  • Gap Solitons in Optical Media

      More details

    Grant type:Competitive

    researchmap

▼display all

Social Activities

  • 高大連携プログラム「ゲーム理論の物理」

    Role(s): Lecturer

    兵庫県立福崎高等学校  2016.12

     More details

    Type:Visiting lecture

    researchmap