Updated on 2025/03/27

写真a

 
Hirano Miki
 
Organization
Graduate School of Science and Engineering (Science) Major of Science and Engineering Mathematics and Computer Science Professor
Title
Professor
Contact information
メールアドレス
External link

Degree

  • 博士(数理科学) ( 1998.3   東京大学 )

  • 修士(数理科学) ( 1995.3   東京大学 )

Research Areas

  • Natural Science / Algebra

Education

  • The University of Tokyo   Graduate School of Mathematical Sciences

    1993.4 - 1998.3

      More details

    Country: Japan

    researchmap

  • Keio University   Faculty of Science and Technology   Department of Mathematics

    1989.4 - 1993.3

      More details

    Country: Japan

    researchmap

Research History

  • Ehime University   Vice President

    2024.4

      More details

  • Ehime University   Associate Director

    2024.4

      More details

  • Ehime University   Center for Data Science   Director

    2020.4

      More details

  • Ehime University   Faculty of Science   Dean

    2015.4 - 2021.3

      More details

Professional Memberships

Committee Memberships

  • 日本数学会   代数学分科会評議員  

    2024.3   

      More details

  • 日本数学会   教育研究資金問題検討委員会委員  

    2022.7   

      More details

    Committee type:Academic society

    researchmap

  • 日本数学会   代数学分科会運営委員  

    2016.4   

      More details

    Committee type:Academic society

    researchmap

  • 日本数学会   中国・四国支部 代議員  

    2016.4 - 2017.3   

      More details

    Committee type:Academic society

    researchmap

  • 愛媛県高等学校教育研究会   数学部会顧問  

    2008.4   

      More details

    Committee type:Municipal

    researchmap

  • 愛媛県スーパーサイエンスハイスクール運営指導委員会   運営指導委員  

    2008.4   

      More details

    Committee type:Municipal

    researchmap

  • 日本数学会   「数学」非常任編集委員  

    2002 - 2005   

      More details

    Committee type:Academic society

    日本数学会

    researchmap

▼display all

Papers

  • Archimedean zeta integrals for GL(3) × GL(2) Reviewed

    Miki Hirano, Taku Ishii, Tadashi Miyazaki

    Memoirs of the American Mathematical Society   278 ( 1366 )   1 - 136   2022.6

     More details

    Language:English  

    In this article, we give explicit formulas of archimedean Whittaker functions
    on $GL(3)$ and $GL(2)$. Moreover, we apply those to the calculation of
    archimedean zeta integrals for $GL(3)\times GL(2)$, and show that the zeta
    integral for appropriate Whittaker functions is equal to the associated
    $L$-factors.

    arXiv

    researchmap

    Other Link: http://arxiv.org/pdf/2104.05042v1

  • RAMANUJAN CAYLEY GRAPHS OF FROBENIUS GROUPS Reviewed

    Miki Hirano, Kohei Katata, Yoshinori Yamasaki

    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY   94 ( 3 )   373 - 383   2016.12

     More details

    Language:English   Publisher:CAMBRIDGE UNIV PRESS  

    We determine a bound for the valency in a family of dihedrants of twice odd prime orders which guarantees that the Cayley graphs are Ramanujan graphs. We take two families of Cayley graphs with the underlying dihedral group of order 2p: one is the family of all Cayley graphs and the other is the family of normal ones. In the normal case, which is easier, we discuss the problem for a wider class of groups, the Frobenius groups. The result for the family of all Cayley graphs is similar to that for circulants: the prime p is 'exceptional' if and only if it is represented by one of six specific quadratic polynomials.

    DOI: 10.1017/S0004972716000587

    Web of Science

    arXiv

    researchmap

    Other Link: http://arxiv.org/pdf/1503.04075v1

  • The archimedean zeta integrals for GL(3) x GL(2) Reviewed

    Miki Hirano, Taku Ishii, Tadashi Miyazaki

    PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES   92 ( 2 )   27 - 32   2016.2

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:JAPAN ACAD  

    We consider here the archimedean zeta integrals for GL(3) x GL(2) and show that the zeta integral for appropriate Whittaker functions is equal to the associated L-factor.

    DOI: 10.3792/pjaa.92.27

    Web of Science

    Scopus

    researchmap

  • The archimedean Whittaker functions on GL(3) Reviewed

    Miki Hirano, Taku Ishii, Tadashi Miyazaki

    GEOMETRY AND ANALYSIS OF AUTOMORPHIC FORMS OF SEVERAL VARIABLES   7   77 - 109   2012

     More details

    Language:English   Publishing type:Research paper (international conference proceedings)   Publisher:WORLD SCIENTIFIC PUBL CO PTE LTD  

    We introduce the explicit formulas of archimedean Whittaker functions on GL(3) and their application to archimedean zeta integrals.

    Web of Science

    researchmap

  • Jackson q-Mahler measures Reviewed

    Miki Hirano, Nobushige Kurokawa

    Functiones et Approximatio, Commentarii Mathematici   42 ( 1 )   51 - 58   2010

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:Adam Mickiewicz University Press  

    In this note, we define a q-analogue of the Mahler measures by using the Jackson integral which we call the Jackson q-Mahler measures. Especially we study their classical limit for polynomials of one variable.

    DOI: 10.7169/facm/1269437068

    Scopus

    researchmap

  • Calculus of principal series Whittaker functions on GL(3, C) Reviewed

    Miki Hirano, Takayuki Oda

    JOURNAL OF FUNCTIONAL ANALYSIS   256 ( 7 )   2222 - 2267   2009.4

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:ACADEMIC PRESS INC ELSEVIER SCIENCE  

    In this paper, we discuss the Whittaker functions for the non-spherical principal series representations of GL(3, C). In particular, we give explicit formulas for these functions. (c) 2008 Elsevier Inc. All rights reserved.

    DOI: 10.1016/j.jfa.2008.10.011

    Web of Science

    Scopus

    researchmap

  • Whittaker functions for P-j-principal series representations of Sp(3, R) Reviewed

    Miki Hirano, Taku Ishii, Takayuki Oda

    ADVANCES IN MATHEMATICS   215 ( 2 )   734 - 765   2007.11

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:ACADEMIC PRESS INC ELSEVIER SCIENCE  

    In this paper, we give explicit formulas for the secondary and the primary Whittaker functions for P-J-principal series representations of Sp(3, R). (c) 2007 Elsevier Inc. All fights reserved.

    DOI: 10.1016/j.aim.2007.04.015

    Web of Science

    Scopus

    researchmap

  • Confluence from Siegel-Whittaker functions to Whittaker functions on Sp(2, R) Reviewed

    Miki Hirano, Taku Ishii, Takayuki Oda

    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY   141   15 - 31   2006.7

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:CAMBRIDGE UNIV PRESS  

    We discuss a confluence from Siegel-Whittaker functions to Whittaker functions on Sp(2, R) by using their explicit formulae. In our proof, we use expansion theorems of the good Whittaker functions by the secondary Whittaker functions.

    DOI: 10.1017/S0305004106009224

    Web of Science

    Scopus

    researchmap

  • Secondary Whittaker functions for P-J-principal series representations of Sp(3, R) Reviewed

    M Hirano, T Oda

    PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES   81 ( 6 )   105 - 109   2005.6

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:JAPAN ACAD  

    In this paper, we give explicit formulas for the secondary Whittaker functions for P-J-principal series representations of Sp(3, R), which are power series solutions of a holonomic system of rank 24.

    DOI: 10.3792/pjaa.81.105

    Web of Science

    Scopus

    researchmap

  • Fourier-Jacobi type spherical functions for principal series representations of Sp(2, R) Reviewed

    Miki Hirano

    Indagationes Mathematicae   15 ( 1 )   43 - 54   2004

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    In this paper, we study the Fourier-Jacobi type spherical functions on Sp (2, R) for irreducible principal series representations. We give the multiplicity theorem and an explicit formula for this function.

    DOI: 10.1016/S0019-3577(04)90004-3

    Scopus

    researchmap

  • Half zeta functions Reviewed

    HIRANO Miki, KUROKAWA Nobushige, WAKAYAMA Masato

    J. Ramanujan Math. Soc.   18 ( 2 )   195 - 209   2003

     More details

    Language:English  

    researchmap

  • Fourier-Jacobi type spherical, functions for P-j-principal series representations of Sp(2,R) Reviewed

    M Hirano

    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES   65   524 - 546   2002.6

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:LONDON MATH SOC  

    The paper studies a generalized spherical function, or a generalized Whittaker model for generalized principal series representations of G = Sp(2, R) induced from the Jacobi maximal parabolic subgroup P-J, which is called the Fourier-Jacobi type. In particular, a multiplicity theorem and an explicit formula via the Meijer G-functions for this function are given.

    DOI: 10.1112/S0024610701002927

    Web of Science

    Scopus

    researchmap

  • Fourier-Jacobi type spherical functions for discrete series representations of Sp(2, R) Reviewed

    M Hirano

    COMPOSITIO MATHEMATICA   128 ( 2 )   177 - 216   2001

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:KLUWER ACADEMIC PUBL  

    In this paper we define a kind of generalized spherical functions on Sp(2, R). We call it 'Fourier-Jacobi type', since it can be considered as a generalized Whittaker model associated with the Jacobi maximal parabolic subgroup. Also we give the multiplicity theorem and an explicit formula of these functions for discrete series representations of Sp(2, R).

    DOI: 10.1023/A:1017528120756

    Web of Science

    Scopus

    researchmap

  • Shintani functions on GL(2, C) Reviewed

    M Hirano

    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY   353 ( 4 )   1535 - 1550   2001

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:AMER MATHEMATICAL SOC  

    In this paper, in analogy to the real case, we give a formulation of the Shintani functions on GL(2, C), which have been studied by Murase and Sugano within the theory of automorphic L-functions. Also, we obtain the multiplicity one theorem for these functions and an explicit formula in a special case.

    Web of Science

    Scopus

    researchmap

  • Shintani functions on GL(2; R) Reviewed

    M Hirano

    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY   352 ( 4 )   1709 - 1721   2000

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:AMER MATHEMATICAL SOC  

    In this paper, we give a formulation and an explicit formula for Shintani function on GL(2, R), which has been studied by Murase and Sugano in the theory of automorphic L-functions. In particular, we obtain the multiplicity of this function.

    Web of Science

    researchmap

  • On theta type functions associated with the zeros of the Selberg zeta functions Reviewed

    M Hirano

    MANUSCRIPTA MATHEMATICA   92 ( 1 )   87 - 105   1997.1

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:SPRINGER VERLAG  

    In this paper, we consider a kind of theta type function concerning the zeros of the Selberg zeta function. This is obtained from an application of Cartier-Voros type Selberg trace formula for non co-compact but co-finite volume discrete subgroups of PSL(2, R).

    Web of Science

    researchmap

  • ON CARTIER-VOROS TYPE SELBERG TRACE FORMULA FOR CONGRUENCE SUBGROUPS OF PSL(2,R) Reviewed

    M HIRANO

    PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES   71 ( 7 )   144 - 147   1995.9

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:JAPAN ACAD  

    Web of Science

    researchmap

▼display all

MISC

  • Whittaker functions on GL(4,R) and archimedean Bump--Friedberg integrals

    Miki Hirano, Taku Ishii, Tadashi Miyazaki

    preprint   2024.8

     More details

    We give explicit formulas of Whittaker functions on GL(4,R) for all
    irreducible generic representations. As an application, we determine test
    vectors which attain the associated L-factors for Bump-Friedberg integrals on
    GL(4,R).

    arXiv

    researchmap

    Other Link: http://arxiv.org/pdf/2409.00401v1

  • Ramanujan circulant graphs and the conjecture of Hardy-Littlewood and Bateman-Horn

    Miki Hirano, Kohei Katata, Yoshinori Yamasaki

    Preprint   arXiv:1310.2130   2016

     More details

    Language:English   Publishing type:Internal/External technical report, pre-print, etc.  

    In this paper, we determine the bound of the valency of the odd circulant
    graph which guarantees to be a Ramanujan graph for each fixed number of
    vertices. In almost of the cases, the bound coincides with the trivial bound,
    which comes from the trivial estimate of the largest non-trivial eigenvalue of
    the circulant graph. As exceptional cases, the bound in fact exceeds the
    trivial one by two. We then prove that such exceptionals occur only in the
    cases where the number of vertices has at most two prime factors and is
    represented by a quadratic polynomial in a finite family and, moreover, under
    the conjecture of Hardy-Littlewood and Bateman-Horn, exist infinitely many.

    arXiv

    researchmap

  • 無限素点における $GL(3)\times GL(2)$ に関する局所ゼータ積分 (モジュラー形式と保型表現)

    平野 幹, 石井 卓, 宮崎 直

    数理解析研究所講究録   1973   101 - 114   2015.11

     More details

    Language:Japanese   Publisher:京都大学  

    CiNii Books

    researchmap

  • PRINCIPAL SERIES WHITTAKER FUNCTIONS ON $GL$(3, C) (Automorphic Representations, Automorphic Forms, L-functions, and Related Topics)

    HIRANO MIKI, ODA TAKAYUKI

    RIMS Kokyuroku   1617   178 - 186   2008.10

     More details

    Language:English   Publisher:Kyoto University  

    CiNii Books

    researchmap

  • PROPAGATION FORMULA FOR PRINCIPAL SERIES WHITTAKER FUNCTIONS ON GL(3,C)

    Hirano Miki

    Journal of the Faculty of Science and Technology Seikei University   44 ( 2 )   17 - 23   2007.12

     More details

  • Confluence from Siegel-Whittaker functions to Whittaker functions on $Sp$(2, $\mathbf{R}$) (Automorphic forms on $Sp$(2,$\mathbf{R}$) and $SU$(2,2) III)

    Hirano Miki, Ishii Taku, Oda Takayuki

    RIMS Kokyuroku   1421   72 - 84   2005.4

     More details

    Publisher:Kyoto University  

    CiNii Books

    researchmap

  • WHITTAKER FUNCTIONS FOR $P_J$-PRINCIPAL SERIES REPRESENTATIONS OF $Sp$(3, $\mathbf{R}$) (Automorphic forms on $Sp$(2,$\mathbf{R}$) and $SU$(2,2) III)

    Hirano Miki, Oda Takayuki

    RIMS Kokyuroku   1421   55 - 64   2005.4

     More details

    Language:Japanese   Publisher:Kyoto University  

    CiNii Books

    researchmap

  • Archimedean Shintani functions on $GL(2)$ (Automorphic Forms and $L$-Functions)

    Hirano Miki

    RIMS Kokyuroku   1103   1 - 7   1999.6

     More details

    Language:English   Publisher:Kyoto University  

    CiNii Books

    researchmap

  • $GL$(2,$\mathbf{C}$)上の新谷関数 (Sp(2;$\mathbb{R}$)とSU(2,2)上の保型形式 II)

    平野 幹

    数理解析研究所講究録   1094   88 - 96   1999.4

     More details

    Language:Japanese   Publisher:京都大学  

    CiNii Books

    researchmap

  • FOURIER-JACOBI TYPE SPHERICAL FUNCTIONS ON $S_p(2,\mathbf{R})$ ; THE CASE OF $P_J$-PRINCIPAL SERIES AND DISCRETE SERIES (Automorphic Forms and Number Theory)

    Hirano Miki

    RIMS Kokyuroku   1052   10 - 18   1998.6

     More details

    Language:English   Publisher:Kyoto University  

    CiNii Books

    researchmap

▼display all

Presentations

  • Explicit archimedean Whittaker functions

    Hirano, Miki

    2025.2 

     More details

    Event date: 2025.2

    Language:English   Presentation type:Oral presentation (general)  

    researchmap

  • Whittaker functions on GL(4,R) and archimedean zeta integrals

    Miki Hirano, Taku Ishii, Tadashi Miyazaki

    RIMS conference "Automorphic form, automorphic L-functions and related topics"  2022.1 

     More details

    Event date: 2022.1

    researchmap

  • Fourier-Jacobi models on Sp_2(R) International conference

    HIRANO Miki

    19th Autumn Workshop on Number Theory  2016.11 

     More details

    Language:English   Presentation type:Oral presentation (general)  

    researchmap

  • Remarks on Ramanujan circulants and dihedrants

    HIRANO Miki

    2018.5 

     More details

  • Whittaker functions on GL(4,R) and archimedean Bump-Friedberg integrals

    Miki Hirano

    Zeta functions in Okinawa 2024  2024.11 

     More details

    Presentation type:Oral presentation (general)  

    researchmap

  • Whittaker functions on GL(4,R) and archimedean Bump-Friedberg integrals

    平野 幹

    新潟代数セミナー  2024.7 

     More details

    Language:Japanese   Presentation type:Oral presentation (general)  

    researchmap

  • Ramanujan Cayley graphs and the conjecture of Hardy-Littlewood and Bateman-Horn

    HIRANO Miki

    2017.12 

     More details

    Language:Japanese   Presentation type:Oral presentation (general)  

    researchmap

▼display all

Research Projects

  • グラフ上の調和解析の視点による整数論の研究

    2019.4 - 2024.3

    日本学術振興会  科学研究費助成事業 基盤研究(C)  基盤研究(C)

    平野 幹

      More details

    Grant amount:\4550000 ( Direct Cost: \3500000 、 Indirect Cost:\1050000 )

    今年度も昨年度に引き続き、代数的に定義された有限正則グラフに対する明示的調和解析を整数論の観点で考察するための基礎的な考察を行った。とりわけ、保型形式論の観点から特殊関数の有限型類似物について考察した。
    <BR>
    有限体上の簡約可能群および関連する対称空間に付随する有限正則グラフ上の調和解析を整数論の観点で考察するためには、指数関数や超幾何型関数、ガンマ関数といった、通常の調和解析や整数論に現れる特殊関数の有限型類似物についての理解が不可欠である。これらの特殊関数の有限型類似物はこれまでにも豊富に考察されているが、今年度は、有限体上の代数群上の調和解析について、とりわけ表現の記述の視点から考察することに加え、有限特殊関数の研究状況について情報収集した。とりわけ、特定のゲルファント対に関連する球関数を特殊関数として明示的に記述することは、そのゲルファント対から得られる対称空間上の調和解析に基づく整数論的考察において肝要である。有限体上の代数群に対するゲルファント対の研究は非常に多くみられるが、有限特殊関数の詳細な研究とその整数論への応用の観点から整理されたものはあまり多くないように思われる。これらについて散見される事実を整理することにより、本研究課題であるグラフ上の調和解析の視点による整数論の研究に向けた基盤整備を進めているところである。
    <BR>
    今後は、これまでの3年間の研究により得た整数論と関連する有限型特殊関数についての知見をさらに深めると同時に、これらを活用して整数論的視点による有限体上の簡約可能群および関連する対称空間に付随する有限正則グラフ上の調和解析の明示的研究を進める予定である。また、ラマヌジャングラフについての研究にも着手したいと考えている。

    researchmap

  • ジェンダー・地域格差に配慮したSTEAM才能教育カリキュラムに関する学際的研究

    2017.4 - 2021.3

    日本学術振興会  科学研究費補助金 基盤研究(A) 

    隅田 学

      More details

    Grant type:Competitive

    researchmap

  • 有限対称空間および関連するグラフスペクトル論の視点による整数論の研究

    2016.4 - 2019.3

    日本学術振興会  科学研究費補助金 挑戦的萌芽研究 

    平野 幹

      More details

    Authorship:Principal investigator  Grant type:Competitive

    researchmap

  • 次数2のジーゲル保型形式に対するフーリエ・ヤコビ型球関数の研究とその応用

    2012.4 - 2015.3

    日本学術振興会  科学研究費補助金 基盤研究(C) 

    平野 幹

      More details

    Authorship:Principal investigator  Grant type:Competitive

    researchmap

  • Arithmetic study of automorphic forms of many variables by various method

    2011.4 - 2015.3

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research  Grant-in-Aid for Scientific Research (A)

    ODA Takayuki, HIRONAKA Yumiko, WAKATSUKI Satoshi, KOSEKI Harutaka, HAYATA Takahiro, TSUZUKI Masao, HIRANO Miki, GON Yasuro, ISHI Taku

      More details

    Grant amount:\30810000 ( Direct Cost: \23700000 、 Indirect Cost:\7110000 )

    We obtained some fundamental results on the integral expressions and power series expressions of the A-radial parts of either Whittaker functions or spherical functions for the standard representations (i.e principal series and/or discrete series representations) of the Lie groups, GL(n,R), Sp(2,R) and SU(3,1).The formulas of Whittaker functions of non-spherical principal series put a period on the research history beginning from the studies of D. Bump and others, and we can expect various applications of this result (this is a joint works with Taku Ishii of Seikei Univ.). We obtained an explicit formulas of the matrix coefficients of the large discrete series of the Lie groups SU(2,1), SU(3,1) (joint wrok with T.Hayata, H. Koseki, and T. Miyazaki).This result gives a suggestion for study of the reproducing kernels. We push forward the investigation oh the cell-decomposition of Siegel-Gottschling fundamental domain of genus 2 (the first paper was a joint paper with T. Hayata).

    researchmap

  • 次数2のジーゲル保型形式に対するフーリエ・ヤコビ型球関数とその応用

    2009.4 - 2012.3

    日本学術振興会  科学研究費補助金 若手研究(B) 

    平野 幹

      More details

    Authorship:Principal investigator  Grant type:Competitive

    researchmap

  • Analysis, geometry and arithmetic of automorphic forms of many variables and higher dimensional modular varieties

    2007 - 2010

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research  Grant-in-Aid for Scientific Research (A)

    ODA Takayuki, ISHII Taku, ICHIKAWA Takashi, IBUKIYAMA Tomoyoshi, ARIYAMA Kazutoshi, KOSEKI Harutaka, SATO Fumihiro, SUGANO Takashi, TSUZUKI Masao, HAYATA Takahiro, HAMAHATA Yoshinori, HIRANO Miki, HIRONAKA Yumiko, MURASE Atsushi, WATANABE Takao

      More details

    Grant amount:\40950000 ( Direct Cost: \31500000 、 Indirect Cost:\9450000 )

    About matrix coefficients of semi-simple Lie groups, we obtained a more precise result for the middle discrete series of SU(2, 2) about the asymptotic expansion. We investigated the explicit formula of the matrix coefficients of SU(3, 1)(both are joint works together with T. Hayata and H. Koseki). Utilizing the asymptotic expansion, we obtained the explicit formula of the c-functions of certain P_J-principal series representations of Sp(2, R) explicitly(joint work with M. Iida). We push forward the investigation of 0-cells of the fundamental domain of the Siegel modular group of genus 2.

    researchmap

  • 次数2のジーゲル保型形式に対するフーリエ・ヤコビ展開と関連する特殊関数の研究

    2006.4 - 2009.3

    日本学術振興会  科学研究費補助金 若手研究(B) 

    平野 幹

      More details

    Authorship:Principal investigator  Grant type:Competitive

    researchmap

  • Cohomology Theory of Finite Groups

    2005 - 2007

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research  Grant-in-Aid for Scientific Research (C)

    SASAKI Hiroki, WATANABE Atumi, SANADA Katsunori, KAWAI Hiroaki, NIWASAKI Takashi

      More details

    Grant amount:\3730000 ( Direct Cost: \3400000 、 Indirect Cost:\330000 )

    Many problems of fundamental importance are left unsolved in the theory of cohomology of block ideals of finite groups. Let G be a finite groups and k an algebraically closed field of prime characteristic dividing the order of G. Let B be a block ideal of kG and let D be a defect group. Let P be a subgroup of D and let H be a subgroup of G containing DC _G (D) and N_G (P). Assume that a block ideal C of kH and the block B are in Brauer correspondence and D is also a defect group of C. It is significantly important to investigate relationships between the block cohomologies H^* (G, B) and H^* (H,C). For example, when H^* (G, B) ⊆ H^* (H,C) does hold, this inclusion map should be understood through transfer maps between Hochshild cohomology rings of the blocks B and C. We showed that the (B, C) -bimodule L which is the Green correspondent of C to G x H has many nice properties which are useful not only for applications for the cohomology theory but also for modular representation theory of finite groups. Under some additional conditions the module L defines the transfer map L:HH^* (B)→ HH^* (C) which induce the inclusion map l:H^* (G,B)→ H^* (H,C) through embeddings of H^* (G, B) into HH^* (B) and of H^* (H,C) into HH^* (c). It is very interesting from a view point of modular representation theory to determine the blocks of kH in which the Green correspondent V of an indecomposable module U lying in the block B lies. We showed that, using the module L above that under some condition the module V lies in the Brauer correspondent C and when H^* (G,B)⊆ H^* (H,C) the block varieties of the modules coincides in the sense that V _(G,B)(U)= l^* V _(H,C)(V).

    researchmap

  • 次数2のジーゲル保型形式に対するフーリエ・ヤコビ展開の定式化の研究

    2003.4 - 2006.3

    日本学術振興会  科学研究費補助金 若手研究(B) 

    平野 幹

      More details

    Authorship:Principal investigator  Grant type:Competitive

    researchmap

  • 次数2の非正則ジーゲル保型形式に対するフーリエ・ヤコビ展開の研究

    2001.4 - 2003.3

    日本学術振興会  科学研究費補助金 若手研究(B) 

    平野 幹

      More details

    Authorship:Principal investigator  Grant type:Competitive

    researchmap

  • Study on automorphic forms on algebraic groups and associated zeta functions

    2001 - 2004

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research  Grant-in-Aid for Scientific Research (B)

    MURASE Atsushi, SUGANO Takashi, ITO Masami, NARITA Hiroaki, HIRANO Miki, OHNO Yasuo

      More details

    Grant amount:\12200000 ( Direct Cost: \12200000 )

    1. Metaplectic representations of unitary groups :
    We studied metaplectic representations of unitary groups over local fields and gave their "universal" splitting, which are in particular useful in the study of theta lifting. As an application of this result, we gave an explicit character formula for metaplectic representations.
    2. Fourier-Jacobi expansion of automorphic form on unitary groups of degree three :
    We reformulated Shintani' s theory on Fourier-Jacobi expansion of automorphic forms on unitary groups of degree three in adelic language, and calculated explicit form for Fourier-Jacobi expansion of Eisenstein series and Kudla lifts, theta lifts from elliptic modular forms. As an application, we gave a criterion for the non-vanishing of Kudla lifts.
    3. Siegel-Weil formula :
    We studied a non-regularized Siegel-Weil formula in the case of the dual reductive pair (U(2,2), U(2, 1)).
    4. Inner product formula for Kudla lifts :
    Using the formula stated in 3, we gave an explicit formula for the Petersson norms of Kudla lifts in term of special values of automorphic L-functions. As an application, we gave a criterion for the non-vanishing of Kudla lifts different from the one given in 2. (The studies 2- 4 are joint works with Takashi Sugano).
    5. Support for the Summer School of Number Theory :
    We supported financially the Summer School of Number Theory held annually.
    The themes were as follows : "Zeta functions" in 2001, "Prehomogeneous vector spaces" in 2002, "Iwasawa theory" in 2003 and "Fundamental groups and Galois representations" in 2004.

    researchmap

  • 保型形式・保型表現、および関連するゼータ関数

    1999

    日本学術振興会  科学研究費助成事業  特別研究員奨励費

    平野 幹

      More details

    Grant amount:\1200000 ( Direct Cost: \1200000 )

    researchmap

  • Automorphic Forms,Automorphic Representations,and Zeta Functions

      More details

    Grant type:Competitive

    researchmap

▼display all

Teaching Experience (On-campus)

▼display all

Social Activities

  • S.C.M.21定例会における講演

    Role(s): Lecturer

    S.C.M.21  2020.9

     More details

    Type:Lecture

    researchmap

  • 愛媛経済研究会

    Role(s): Lecturer

    愛媛経済研究会  2017.10

     More details

    Type:Lecture

    researchmap

  • 19th Autumn Workshop on Number Theory

    Role(s): Planner, Organizing member

    Miki Hirano, Taku Ishii, Tadashi Miyazaki, Hiroki Aoki  2016.11

     More details

    Type:Seminar, workshop

    researchmap